cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119624 Least k>0 such that, for n>1, 2*n^k + 1 is prime; or 0 if no such prime possible as 2*n^k + 1 is 0 mod(3).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 1, 0, 47, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 3, 1, 0, 1, 1, 0, 2729, 1, 0, 1, 2, 0, 1, 2, 0, 175, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 3, 3, 0, 43, 1, 0, 1, 2, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 3, 1, 0, 11, 1, 0, 1, 4, 0, 1, 2, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Pierre CAMI, Jun 08 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    if n mod 3 = 1 then return 0 fi;
      if n mod 3 = 2 then r:= 2 else r:= 1 fi;
      for k from 1 by r do if isprime(2*n^k+1) then return k fi od
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Apr 02 2018
  • Mathematica
    f[n_] := Block[{k = 0}, If[Mod[n, 3] != 1, k = 1; While[ ! PrimeQ[2*n^k + 1], k++ ]; ]; k ]; Table[f[n], {n, 2, 100}] (* Ray Chandler, Jun 08 2006 *)
    Table[If[n>1 && Mod[n,3]==1, 0, k=1; While[ !PrimeQ[2n^k+1], k++ ]; k], {n,100}] (* T. D. Noe, Jun 08 2006 *)
  • PARI
    a(n) = if(n%3==1, 0, for(k=1, 2^24, if(ispseudoprime(2*n^k+1),return(k)))) \\ Eric Chen, Mar 20 2015

Extensions

Extended by Ray Chandler and T. D. Noe, Jun 08 2006