cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121479 Triangular numbers with more than three distinct prime factors.

Original entry on oeis.org

210, 630, 780, 990, 1326, 1540, 1596, 1770, 1830, 2145, 2346, 2415, 2850, 2926, 3003, 3486, 3570, 3828, 4095, 4186, 4278, 4560, 4950, 5460, 5565, 6105, 6216, 6555, 6670, 6786, 7140, 7260, 7626, 8385, 8646, 8778, 9180, 9730, 9870, 10296, 10440, 10878
Offset: 1

Views

Author

Klaus Brockhaus, Aug 01 2006

Keywords

Examples

			20*21/2 = 2*3*5*7 = 210 is the smalles triangular number with more than three distinct prime factors, hence a(1) = 210.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[200]],PrimeNu[#]>3&] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    for(n=1,100,k=binomial(n+1,2);if(omega(k)>3,print1(k,",")))

A121478 Triangular numbers with three distinct prime factors.

Original entry on oeis.org

66, 78, 105, 120, 190, 231, 276, 300, 378, 406, 435, 465, 528, 561, 595, 666, 741, 820, 861, 903, 946, 1035, 1128, 1176, 1275, 1378, 1485, 1653, 1953, 2016, 2080, 2211, 2278, 2485, 2556, 2628, 2775, 3081, 3160, 3240, 3655, 3741, 3916, 4005, 4371, 4465
Offset: 1

Views

Author

Klaus Brockhaus, Aug 01 2006

Keywords

Examples

			11*12/2 = 2*3*11 = 66 is the smalles triangular number with three distinct prime factors, hence a(1) = 66.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[0, 100]] ,PrimeNu[#]==3&] (* James C. McMahon, Oct 19 2024 *)
  • PARI
    for(n=1,100,k=binomial(n+1,2);if(omega(k)==3,print1(k,",")))

A380101 Numbers k such that omega(k-th triangular number) = 2, where omega = A001221.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 17, 18, 22, 25, 26, 31, 37, 46, 49, 53, 58, 61, 73, 81, 82, 97, 106, 121, 127, 157, 162, 166, 178, 193, 226, 241, 242, 250, 256, 262, 277, 313, 337, 346, 358, 361, 382, 397, 421, 457, 466, 478, 486, 502, 541, 562, 577, 586, 613
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 12 2025

Keywords

Crossrefs

Supersequence of A077065 and of A178490.

Programs

  • Magma
    [k: k in [1..400] | #PrimeDivisors(k*(k+1) div 2) eq 2];
    
  • Maple
    filter:= proc(n) local W1, n1, W2; uses numtheory;
         if n::odd then nops(factorset(n)) = 1 and nops(factorset((n+1)/2)) = 1
         else nops(factorset(n/2)) = 1 and nops(factorset(n+1)) = 1
         fi
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 12 2025
  • Mathematica
    Select[Range[600], PrimeNu[#*(#+1)/2] == 2 &] (* Amiram Eldar, Jan 12 2025 *)
  • PARI
    isok(k) = omega(k*(k+1)/2) == 2; \\ Michel Marcus, Jan 14 2025
Showing 1-3 of 3 results.