cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132143 Prime numbers P such that (P^k-2) is not divisible by 35(=A119691(1)) for any value of k.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 269, 271, 281, 283, 293, 307, 311, 313, 331, 337, 349, 353
Offset: 1

Views

Author

A.K. Devaraj, Aug 12 2007

Keywords

Comments

Primes not congruent to 2, 18, 23, or 32 (mod 35). - Robert Israel, Jan 14 2019

References

  • A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Programs

  • Maple
    G:= sort(convert(map(proc(t) if t::even then t+35 else t fi end proc, {$0..34} minus {2,18,23,32}),list)):
    select(isprime, [seq(seq(70*i+j,j=G),i=0..10)]); # Robert Israel, Jan 14 2019
  • PARI
    forprime(p=1, 353, if(#setintersect([p%35], [2, 18, 23, 32])==0, print1(p, ", "))) \\ Felix Fröhlich, Jan 14 2019

Extensions

Terms beyond 41 from R. J. Mathar, Mar 01 2010

A131960 a(n) = A000043(n) * A000668(n).

Original entry on oeis.org

6, 21, 155, 889, 106483, 2228207, 9961453, 66571993057, 140656423562035331011, 55088331748199422233011027879, 17361742620725829882898847100829589, 21607930299479592429924287571917281427329
Offset: 1

Views

Author

A.K. Devaraj, Aug 02 2007, Aug 06 2007

Keywords

Comments

Note that a(3) = 155 and a(4) = 889 also belong to A119691.
Old name was: Composite numbers such that the first factor is the relevant exponent of Mersenne prime (the second factor).
a(n) is the smallest k > 0 such that A000668(n)^2 divides 2^k-1. Then lpf(2^k-1) = A000668(n), where lpf(m) = A020639(m). - Thomas Ordowski, Feb 03 2019

Crossrefs

Programs

  • Mathematica
    Map[# * (2^#-1) &, MersennePrimeExponent[Range[12]]] (* Amiram Eldar, Oct 21 2024 *)
  • PARI
    expm = [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127]; vector(#expm, i, expm[i]*(2^expm[i]-1)) \\ where expm comes from A000043; Michel Marcus, Feb 07 2019

Formula

a(n) = A000043(n)*A000668(n). - R. J. Mathar, Oct 18 2007
a(n) = A002326((A000668(n)^2 - 1)/2). - Thomas Ordowski, Feb 03 2019

Extensions

Terms corrected, edited, and new name by Michel Marcus, Apr 30 2013
a(12) from Michel Marcus, Feb 07 2019
Showing 1-2 of 2 results.