A132143 Prime numbers P such that (P^k-2) is not divisible by 35(=A119691(1)) for any value of k.
3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 269, 271, 281, 283, 293, 307, 311, 313, 331, 337, 349, 353
Offset: 1
References
- A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
G:= sort(convert(map(proc(t) if t::even then t+35 else t fi end proc, {$0..34} minus {2,18,23,32}),list)): select(isprime, [seq(seq(70*i+j,j=G),i=0..10)]); # Robert Israel, Jan 14 2019
-
PARI
forprime(p=1, 353, if(#setintersect([p%35], [2, 18, 23, 32])==0, print1(p, ", "))) \\ Felix Fröhlich, Jan 14 2019
Extensions
Terms beyond 41 from R. J. Mathar, Mar 01 2010
Comments