cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A178202 Smallest k such that 41^k mod k = n.

Original entry on oeis.org

1, 2, 3, 19, 37, 76, 7, 17, 9, 22, 31, 15, 29, 77, 309, 34, 7194589, 26, 23, 341, 21, 55, 799, 1658, 476983, 46, 27, 427, 629, 52, 142241, 138, 68889, 136, 1897, 129, 30935, 44, 19303, 1642, 34943, 43, 8858994648397, 102, 117, 436, 7715, 86, 49
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[41, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

a(0)=1 prepended and a(42) added by Max Alekseyev, Feb 04 2012

A178195 Smallest k such that 34^k mod k = n.

Original entry on oeis.org

1, 3, 1154, 31, 5, 29, 7, 39297, 13, 19055, 18, 23, 22, 21, 535, 19, 20, 62537, 1138, 45, 142, 2092793, 42, 19547, 25, 39279, 50, 749, 36, 39055, 1126, 39, 188, 93641, 35, 634815079, 70, 171, 86, 355, 52, 65387, 713, 69, 148, 253, 74
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Comments

First unknown term is a(47), where there are no solutions < 2904290724.
For a catalog of sequences of the kind "smallest k such that m^k mod k = n," see A178194.

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[34, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A178196 Smallest k such that 35^k mod k = n.

Original entry on oeis.org

1, 2, 3, 26, 31, 10, 29, 14, 9, 13, 55, 57, 23, 92, 21, 22, 19, 99, 187, 134, 2105, 28, 169, 1202, 593791, 30, 27, 1198, 203, 46, 695, 66, 42843, 248, 4023706859, 37, 449467, 132, 327, 1186, 565, 74, 581, 394, 14277, 110, 59867, 62, 1311139, 56, 75
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[35, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

Extensions

Terms a(34) onward from Max Alekseyev, Feb 04 2012

A178197 Smallest k such that 36^k mod k = n.

Original entry on oeis.org

1, 5, 17, 11, 34, 31, 10, 29, 14, 213, 13, 1585, 39, 23, 1282, 21, 20, 19, 142, 56413361, 22, 445, 26, 169, 87, 341, 50, 33, 332, 33607, 57, 55329163, 158, 46623, 1262, 33763, 37, 167987937385549, 74, 123, 284, 12091, 51, 119, 626, 531, 2630, 960641, 104, 473, 98, 75, 116, 424381, 174, 7751, 62, 951, 781, 364789, 206, 545, 1234, 93, 77, 205591, 78, 51367, 614, 159, 1226, 623, 207, 23147, 94, 11847, 100, 3551, 161, 332089, 176, 99, 143, 361841, 202, 73969, 590, 129, 302
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[36, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

Extensions

Terms a(37) onward from Max Alekseyev, May 07 2012

A178198 Smallest k such that 37^k mod k = n.

Original entry on oeis.org

1, 2, 5, 17, 11, 22, 31, 25, 29, 10, 51, 13, 2585, 15, 23, 1354, 3157, 26, 19, 30, 14366417, 332, 85, 55, 510647, 44, 341, 122, 135, 52, 49, 33, 27905, 136, 141, 46, 55319, 41, 115, 190, 50613, 166, 205, 75, 252701, 284, 203, 1322, 395, 50, 1247
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[37, k, k] != n, k++ ]; Print[k]; AppendTo[aa, k], {n, 0, 50}]; aa

A178199 Smallest k such that 38^k mod k = n.

Original entry on oeis.org

1, 37, 3, 5, 6, 11, 1438, 31, 9, 29, 18, 45021, 13, 5249, 22, 23, 20, 69, 25, 437, 21, 227643018837677, 42, 141, 50, 19877, 27, 121, 36, 303, 98, 49, 75, 329, 94, 261, 116, 9200543, 39, 87541720241623, 52, 1119, 1402, 510025, 356, 24829, 466, 51
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[38, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa
    sk[n_]:=Module[{k=1},While[PowerMod[38,k,k]!=n,k++];k]; Array[sk,50,0] (* Harvey P. Dale, Mar 14 2015 *)

Extensions

Terms a(21) onward from Max Alekseyev, Apr 22 2012

A178200 Smallest k such that 39^k mod k = n.

Original entry on oeis.org

1, 2, 37, 6, 5, 17, 11, 1514, 31, 12, 29, 70, 159, 26, 85, 21, 23, 94, 33, 1502, 779, 30, 253529023201, 214, 25, 28, 299, 54, 2905241561, 115, 77, 298, 96172711, 48, 13243955, 1486, 63, 106, 1841252062709911, 41, 13343, 74, 59277, 1478, 119, 82, 697, 134, 69, 176, 70961, 150, 481, 116, 55, 1466, 3161, 84, 437, 86, 511, 146, 13787, 153, 90224135, 104, 6789, 1454, 140459, 132, 958471, 1303310, 87, 362, 175, 482, 1369, 244, 93, 98, 2501, 88, 119239, 1438, 1077, 692, 2258141, 102, 9066799, 358, 99, 130, 46859, 506, 121, 217, 187, 124, 163067, 105, 40649
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[39, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

Terms a(22) onward from Max Alekseyev, Feb 04 2012, Apr 13 2012

A178201 Smallest k such that 40^k mod k = n.

Original entry on oeis.org

1, 3, 19, 37, 6, 7, 17, 11, 92, 31, 15, 29, 794, 21, 26, 215, 22, 23, 98, 49, 124, 19849, 42, 12405874306277, 284, 75, 1574, 221, 36, 323, 70, 119, 56, 133, 58, 685, 44, 69, 142, 187, 41, 31561, 82, 3197, 148, 10073, 51, 511, 176, 37603, 62, 437, 86, 1339, 1546, 63, 386, 12599, 138, 3017, 140, 493, 1538, 529, 72, 935, 118, 303, 253, 277061, 95
Offset: 0

Views

Author

Artur Jasinski, May 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[k = 1; While[PowerMod[40, k, k] != n, k++ ]; Print[{n, k}]; AppendTo[aa, k], {n, 1, 50}]; aa

Extensions

Terms a(23) onward from Max Alekseyev, Mar 19 2012
Showing 1-8 of 8 results.