A119725 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k).
1, 1, 1, 1, 5, 1, 1, 13, 17, 1, 1, 29, 73, 53, 1, 1, 61, 233, 325, 161, 1, 1, 125, 649, 1349, 1297, 485, 1, 1, 253, 1673, 4645, 6641, 4861, 1457, 1, 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1, 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 5, 1; 1, 13, 17, 1; 1, 29, 73, 53, 1; 1, 61, 233, 325, 161, 1; 1, 125, 649, 1349, 1297, 485, 1; 1, 253, 1673, 4645, 6641, 4861, 1457, 1; 1, 509, 4105, 14309, 27217, 29645, 17497, 4373, 1; 1, 1021, 9737, 40933, 97361, 140941, 123929, 61237, 13121, 1;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
- Termeszet Vilaga A XI. Természet-Tudomány Diákpályázat díjnyertesei 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): Pascal-tipusu haromszogek
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return 3*T(n-1,k-1) + 2*T(n-1,k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
-
Maple
T:= proc(n, k) option remember; if k=1 and k=n then 1 else 3*T(n-1, k-1) + 2*T(n-1, k) fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 3*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==1 || k==n, 1, 3*T(n-1,k-1) + 2*T(n-1,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
@CachedFunction def T(n, k): if (k==1 or k==n): return 1 else: return 3*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019
Extensions
Edited by Don Reble, Jul 24 2006
Comments