A119726 Triangular array read by rows: T(n,1) = T(n,n) = 1, T(n,k) = 4*T(n-1, k-1) + 2*T(n-1, k).
1, 1, 1, 1, 6, 1, 1, 16, 26, 1, 1, 36, 116, 106, 1, 1, 76, 376, 676, 426, 1, 1, 156, 1056, 2856, 3556, 1706, 1, 1, 316, 2736, 9936, 18536, 17636, 6826, 1, 1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1, 1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 16, 26, 1; 1, 36, 116, 106, 1; 1, 76, 376, 676, 426, 1; 1, 156, 1056, 2856, 3556, 1706, 1; 1, 316, 2736, 9936, 18536, 17636, 6826, 1; 1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1; 1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1;
References
- TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return 4*T(n-1,k-1) + 2*T(n-1,k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
-
Maple
T:= proc(n, k) option remember; if k=1 and k=n then 1 else 4*T(n-1, k-1) + 2*T(n-1, k) fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 4*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==1 || k==n, 1, 4*T(n-1,k-1) + 2*T(n-1,k));
-
Sage
@CachedFunction def T(n, k): if (k==1 or k==n): return 1 else: return 4*T(n-1, k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019
Extensions
Edited by Don Reble, Jul 24 2006
Comments