A119749 Number of compositions of n into odd blocks with one element in each block distinguished.
1, 1, 4, 7, 15, 32, 65, 137, 284, 591, 1231, 2560, 5329, 11089, 23076, 48023, 99935, 207968, 432785, 900633, 1874236, 3900319, 8116639, 16890880, 35150241, 73148321, 152223044, 316779047, 659223215, 1371856032, 2854858465
Offset: 1
Examples
a(3) = 4 since Abc, aBc, abC come from one block of size 3 and A/B/C comes from having three blocks. The capital letters are the distinguished elements.
Links
- R. X. F. Chen and L. W. Shapiro, On Sequences G(n) satisfying G(n)=(d+2)*G(n-1)-G(n-2), J. Int. Seq. 10 (2007) #07.8.1, Theorem 16.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (6).
- Y.-h. Guo, n-Color Odd Self-Inverse Compositions, J. Int. Seq. 17 (2014) # 14.10.5, eq. (2).
- B. Hopkins, Spotted tilings and n-color compositions, INTEGERS 12B (2012/2013), #A6.
- Index entries for linear recurrences with constant coefficients, signature (1,2,1,-1).
Programs
-
Mathematica
Rest@ CoefficientList[ Series[x(1 + x^2)/(x^4 - x^3 - 2x^2 - x + 1), {x, 0, 50}], x] (* Robert G. Wilson v *)
Formula
G.f.: (x+x^3)/(x^4 - x^3 -2x^2 -x +1).
Sum_{k=0..n} a(k) = (3*a(n) + 2*a(n-1) - a(n-3))/2 - 1. - Xilin Wang and Greg Dresden, Aug 27 2020
Comments