A119789 T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2, triangle read by rows.
0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 5, 6, 4, 4, 4, 5, 6, 7, 8, 5, 5, 5, 6, 7, 8, 9, 10, 6, 6, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16
Offset: 0
Examples
Triangle begins as: 0; 0, 0; 0, 0, 0; 1, 1, 1, 2; 2, 2, 2, 3, 4; 3, 3, 3, 4, 5, 6; 4, 4, 4, 5, 6, 7, 8; 5, 5, 5, 6, 7, 8, 9, 10;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A119789:= func< n,k | n le 2 select 0 else k le 1 select n-2 else n+k-4 >; [A119789(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 17 2022
-
Mathematica
f[n_, k_]= If[n<3, 0, If[k==0, n-2, Floor[Log[GoldenRatio, Fibonacci[n]*Fibonacci[k]]]]]; Table[f[n, k], {n,0,12}, {k,0,n}]//Flatten (* Second program *) T[n_, k_]:= T[n, k]= If[n<3, 0, If[k<2, n-2, n+k-4]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 17 2022 *)
-
SageMath
def A119789(n,k): if (n<3): return 0 elif (k<2): return n-2 else: return n+k-4 flatten([[A119789(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 17 2022
Formula
T(n, k) = floor(log_{goldenratio}(Fibonacci(n)*Fibonacci(k))), with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n > 2.
From G. C. Greubel, Dec 17 2022: (Start)
T(n, k) = n+k-4, with T(n, k) = 0 for n < 3, T(n, 0) = n-2 for n >= 3.
T(n, n) = 2*T(n, 0).
T(2*n, n) = 0*[n<2] + A016789(n-2)*[n>1].
T(2*n, n+1) = 3*A001477(n-1), for n > 0.
T(2*n, n-1) = A033627(n) - [n=1].
T(3*n, n) = n*[n<2] + 4*A000027(n-2)*[n>1].
Sum_{k=0..n} T(n, k) = 0*[n<2] + A140090(n-2)*[n>1].
Sum_{k=0..n} (-1)^k * T(n, k) = 0*[n<2] + (-1)^n*A064455(n-2)*[n>1]. (End)
Extensions
Edited by G. C. Greubel, Dec 17 2022