cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119806 Decimal expansion of cos(gamma).

Original entry on oeis.org

8, 3, 7, 9, 8, 5, 2, 8, 7, 8, 8, 0, 1, 9, 6, 5, 3, 9, 9, 5, 4, 9, 9, 2, 8, 6, 1, 2, 5, 8, 9, 4, 9, 7, 2, 4, 8, 0, 8, 6, 5, 9, 2, 0, 1, 3, 2, 4, 1, 7, 6, 6, 5, 7, 9, 0, 4, 1, 1, 7, 8, 9, 3, 5, 5, 6, 7, 7, 6, 9, 3, 6, 8, 8, 8, 0, 2, 6, 2, 2, 2, 3, 2, 7, 5, 4, 9, 4, 1, 4, 6, 8, 6, 5, 4, 2, 1, 9, 1, 7, 5, 6, 8, 2, 3
Offset: 0

Views

Author

T. D. Noe, May 24 2006

Keywords

Comments

This is the real part of exp(i*gamma), where gamma is the Euler-Mascheroni constant A001620. See A119807 for the imaginary part. The constant exp(gamma) (A073004) appears in many formulas. Does exp(i*gamma)?

Examples

			0.8379852878801965399549928612589497248086592013241766579...
		

Crossrefs

Cf. A001620 (Euler-Mascheroni constant), A073004, A119807.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Cos(EulerGamma(R)); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[Cos[EulerGamma],10,150][[1]]
  • PARI
    default(realprecision, 100); cos(Euler) \\ G. C. Greubel, Aug 30 2018
    

Formula

Equals 2 * e * lim_{n->oo} (sin(gamma(n))-sin(gamma))*(n!)^(1/n), where gamma(n) = Sum_{k=1..n} 1/k - log(n) (Bătineţu-Giurgiu, 2021). - Amiram Eldar, Apr 02 2022