cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119807 Decimal expansion of sin(gamma).

Original entry on oeis.org

5, 4, 5, 6, 9, 2, 8, 2, 3, 2, 0, 3, 9, 9, 2, 7, 8, 8, 1, 5, 7, 3, 5, 6, 5, 0, 0, 1, 6, 1, 4, 3, 0, 7, 4, 3, 5, 0, 3, 7, 8, 8, 1, 0, 9, 2, 0, 5, 2, 2, 0, 7, 1, 1, 1, 5, 1, 9, 1, 4, 1, 5, 2, 6, 8, 9, 7, 8, 3, 0, 5, 3, 7, 9, 0, 2, 8, 3, 1, 9, 1, 0, 5, 7, 5, 5, 9, 6, 1, 5, 4, 7, 9, 2, 3, 7, 4, 6, 1, 2, 1, 0, 6, 0, 8
Offset: 0

Views

Author

T. D. Noe, May 24 2006

Keywords

Comments

This is the imaginary part of exp(i*gamma), where gamma is the Euler-Mascheroni constant A001620. See A119806 for the real part. The constant exp(gamma) (A073004) appears in many formulas. Does exp(i*gamma)?

Examples

			0.54569282320399278815735650016143074350378810920522...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sin(EulerGamma(R)); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[Sin[EulerGamma],10,150][[1]]
  • PARI
    default(realprecision, 100); sin(Euler) \\ G. C. Greubel, Aug 30 2018
    

A322545 Continued fraction for cos(gamma).

Original entry on oeis.org

0, 1, 5, 5, 1, 4, 8, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 18, 1, 73, 2, 5, 3, 5, 4, 1, 1, 1, 7, 1, 4, 2, 1, 1, 32, 12, 2, 19, 8, 1, 1, 1, 1, 1, 3, 5, 2, 70, 1, 6, 6, 1, 52, 2, 1, 2, 10, 1, 1, 1, 4, 1, 3, 1, 5, 1, 7, 3, 1, 1, 1, 20, 5, 6, 6, 2, 4, 3, 7, 1, 1, 2, 10, 1, 9, 12, 45, 1, 16, 2
Offset: 0

Views

Author

Tristan Cam, Dec 20 2018

Keywords

Comments

Continued fraction of the real part of exp(i*gamma) = cos(gamma) (A119806), where gamma is the Euler-Mascheroni constant (A001620).
See A322601 for the continued fraction of imaginary part.

Examples

			0 + 1/(1 + 1/(5 + 1/(5 + 1/(1 + 1/(4 + 1/(8 + 1/(1 + ...))))))) = 0.8379852878801965399549928...
		

Crossrefs

Cf. A119806 (decimal expansion), A001620 (Euler-Mascheroni constant), A322601.

Programs

  • Maple
    with(numtheory): cfrac(cos(gamma),100,'quotients'); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    ContinuedFraction[ Cos[EulerGamma], 100]
  • PARI
    contfrac(cos(Euler)) \\ Michel Marcus, Dec 21 2018

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024
Showing 1-2 of 2 results.