cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119810 Partial quotients of the continued fraction of the constant defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.

Original entry on oeis.org

2, 3, 10, 132, 131104, 2199023259648, 633825300114114700748888473600, 883423532389192164791648750371459257913741948437810659652423818057613312
Offset: 1

Views

Author

Paul D. Hanna, May 26 2006

Keywords

Comments

Convergents A119811: [2/1,7/3,72/31,9511/4095,1246930216/536870911,...], where the denominators of the convergents are equal to [2^A000129(n-1)-1] and A000129 is the Pell numbers. The number of digits in these partial quotients are (beginning at n=1): [1,1,2,3,6,13,30,72,174,420,1013,2445,5901,14246,34391,83027,...].

Examples

			c = 2.32258852258806773012144068278798408011950250800432925665718...
The partial quotients start:
a(1) = 2^1; a(2) = 2^1 + 2^0; a(3) = 2^3 + 2^1;
a(4) = 2^7 + 2^2; a(5) = 2^17 + 2^5; a(6) = 2^41 + 2^12;
and continue as a(n) = 2^A001333(n-1) + 2^A000129(n-2) where
A001333(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n )/2;
A000129(n) = ( (1+sqrt(2))^n - (1-sqrt(2))^n )/(2*sqrt(2)).
		

Crossrefs

Cf. A119809 (decimal expansion), A119811 (convergents); A119812 (dual constant).

Programs

  • Mathematica
    (* b = A001333 *) b[0] = 1; b[1] = 1; b[n_] := b[n] = 2 b[n-1] + b[n-2]; a[1] = 2; a[n_] := 2^b[n-1] + 2^Fibonacci[n-2, 2]; Array[a, 10] (* Jean-François Alcover, May 04 2017 *)
  • PARI
    {a(n)=if(n==1,2,2^round(((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))/2) +2^round(((1+sqrt(2))^(n-2)-(1-sqrt(2))^(n-2))/(2*sqrt(2))))}

Formula

a(n) = 2^A001333(n-1) + 2^A000129(n-2) for n>1, with a(1)=2.