A119857 Number of equicolored (unrooted) trees on 2n nodes.
1, 1, 4, 14, 65, 316, 1742, 10079, 61680, 391473, 2565262, 17237962, 118341446, 827194809, 5872518213, 42256545977, 307681822711, 2263881127801, 16813356777456, 125917441081662, 950148951332802, 7218810159035143, 55187741462110393, 424318236236124092
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
Programs
-
PARI
\\ R is b.g.f of rooted trees x nodes, y in one part R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2,1,y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A}; seq(n)={my(A=Pol(R(n))); my(r(x,y)=substvec(A, ['x,'y], [x,y/x])); Vec(polcoeff((r(x,y/x) + r(y/x,x) - r(x,y/x)*r(y/x,x)), 0) + O(y*y^n))} \\ Andrew Howroyd, May 23 2018
Extensions
Terms a(8) and beyond from Andrew Howroyd, May 21 2018
Comments