cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119900 Triangle read by rows: T(n,k) is the number of binary words of length n with k strictly increasing runs, for 0<=k<=n.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 4, 4, 0, 0, 1, 10, 5, 0, 0, 0, 6, 20, 6, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 1, 55, 330, 462, 165, 11, 0, 0, 0, 0, 0, 0, 12, 220, 792, 792, 220, 12, 0, 0, 0, 0, 0, 0, 1, 78
Offset: 0

Views

Author

Emeric Deutsch, May 27 2006

Keywords

Comments

Sum of terms in row n is 2^n (A000079). Sum of terms in column k is A001906(k+1) (the even-indexed Fibonacci numbers). Row n contains 1+floor(n/2) nonzero terms. Sum_{k=0..n} k*T(n,k) = (3n+1)*2^(n-2) = A066373(n+1) for n>=1.
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1/2,-1/2,0,0,0,0,0, 0,...] DELTA [2,-1/2,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 02 2008
From R. Bagula's comment in A053122 (cf. Damianou link), the columns of this array give the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
Odd rows contain the Pascal triangle numbers A091042. See A034867 and A034839 for some relations to tan(x). - Tom Copeland, Oct 15 2014

Examples

			The binary word 1/0/01/01/1/1/01 has 7 strictly increasing runs.
T(5,3)=6 because we have 0/01/01, 01/0/01, 01/01/0, 01/1/01, 01/01/1 and 1/01/01 (the runs are separated by /).
Triangle starts:
  1;
  0,2;
  0,1,3;
  0,0,4,4;
  0,0,1,10,5;
  0,0,0,6,20,6;
		

Crossrefs

Programs

  • Magma
    /* triangle */ [[Binomial(n+1, 2*k-n): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Oct 22 2017
  • Maple
    T:=(n,k)->binomial(n+1,2*k-n): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[n + 1, 2 k - n], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+1, 2*k-n), ", "))) \\ G. C. Greubel, Oct 22 2017
    

Formula

T(n,k) = binomial(n+1,2k-n).
G.f.: 1/(1 - 2*t*z - t*(1-t)*z^2).
T(n,k) = A034867(n,n-k)
From Tom Copeland, Sep 30 2011: (Start)
With K(x,t) = 1/{d/dx{x/[t-1+1/(1-x)]}} = [t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, the g.f. of A119900 = K(x*t,t)-t+1.
From formulas in A134264: K(x,t)d/dx is a generator for A001263. A refinement of A119900 to partition polynomials is given by umbralizing
K(x,t) roughly as K(h.x,h_0) and precisely as in A134264 as
W(x)= 1/{d/dx[f(x)]}=1/{d/dx[x/h(x)]}. (End)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2). - Philippe Deléham, Oct 02 2011
From Tom Copeland, Dec 07 2015: (Start)
An alternate o.g.f. is (1/(x*t)) {-1 + 1 / [1 - (1/t)[x*t/(1-x*t)]^2]} = Sum_{n>0} x^(2(n-1)+1) t^(n-1) / (1-t*x)^(2n) = x + 2t x^2 + (t+3t^2) x^3 + ... .
The n-th diagonal has elements binomial(2n+1+k,k), starting with k=0 for the first non-vanishing element, with o.g.f. (1-x)^(-2(n+1)). The first few subdiagonals are shifted versions of A000292, A000389, and A000580. Cf. A049310.
See A034867 for the matrix representation for the infinitesimal generator K(x,t) d/dx for the Narayana polynomials. (End)
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k + 1,n) = (n*(n + 1)/2)^(p+1).
For example, for row 6 we find S(7,n) + 21*S(9,n) + 35*S(11,n) + 7*S(13,n) = (n*(n + 1)/2)^7.
There appears to be a similar result for the even power sums S(2*k,n) involving A207543. (End)

Extensions

Keyword tabl added by Philippe Deléham, Jan 26 2010