A119951 Numerators of partial sums of a convergent series with value 4, involving scaled Catalan numbers A000108.
1, 3, 29, 65, 281, 595, 9949, 20613, 84883, 173965, 1421113, 2894229, 11762641, 23859587, 773201629, 1564082093, 6321150767, 12761711209, 102977321267, 207595672639, 836499257311, 1684433835077, 27122471168057, 54567418372945, 219485160092143, 441266239318305, 3547513302275441
Offset: 1
Examples
Rationals r(n): [1, 3/2, 29/16, 65/32, 281/128, 595/256, 9949/4096, 20613/8192, ...]
References
- H. Meschkowski, Unendliche Reihen, 2., verb. u. erw. Aufl., Mannheim, Bibliogr. Inst., 1982, p. 32.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, Rationals r(n) and more.
- Eric Weisstein's World of Mathematics, Catalan numbers, see eq.(10).
Programs
-
Mathematica
Numerator[Table[(1/4^n)*Sum[Binomial[2*(i + 1), i + 1]*Binomial[2*(n - i), n - i], {i, 0, n - 1}], {n, 1, 50}]] (* G. C. Greubel, Jan 31 2017 *)
-
PARI
for(n=1,25, print1(numerator(sum(i=0,n-1, binomial(2*(i+1),i+1)* binomial(2*(n-i), n-i))/4^n), ", ")) \\ G. C. Greubel, Jan 31 2017
Formula
a(n) = numerator of Sum_{k=1..n} C(k)/2^(2*(k-1)).
a(n-1) = numerator of (1/4^n)*Sum_{i=0..n-1} (binomial(2*(i+1), i+1)*binomial(2*(n-i), n-i)), for n>=1. - Johannes W. Meijer, May 24 2009
a(n) = (2^n-(2*n+2)!/(2^(n+1)*(n+1)!^2))*gcd((n+1)!,2^(n+1)). - Gary Detlefs, Nov 06 2020
Comments