A160466
Row sums of the Eta triangle A160464.
Original entry on oeis.org
-1, -9, -87, -2925, -75870, -2811375, -141027075, -18407924325, -1516052821500, -153801543183750, -18845978136851250, -2744283682352086875, -468435979952504313750, -92643070481933918821875
Offset: 2
-
nmax:=15; c(2) := -1/3: for n from 3 to nmax do c(n):=(2*n-2)*c(n-1)/(2*n-1)-1/ ((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n):=2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n) end do: mmax:=nmax: for m from 2 to mmax do ETA(2, m) := 0 end do: for n from 3 to nmax do for m from 2 to mmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*(-ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: for n from 2 to nmax do s1(n):=0: for m from 1 to n-1 do s1(n) := s1(n) + ETA(n, m) end do end do: seq(s1(n), n=2..nmax);
# End first program.
nmax:=nmax; A160467 := proc(n): denom(4*(4^n-1)*bernoulli(2*n)/n) end: A043529 := proc(n): ceil(frac(log[2](n+1))+1) end proc: A000466 := proc(n): 4*n^2-1 end proc: A045896 := proc(n): denom((n)/((n+1)*(n+2))) end proc: A119951 := proc(n) : numer(sum(((2*k1)!/(k1!*(k1+1)!))/2^(2*(k1-1)), k1=1..n)) end proc: for n from 1 to nmax do SF(2*n+1):= A000466(n)/A043529(n-1); SF(2*n+2) := A045896(n-1)/A160467(n+1) end do: FF(2):=1: for n from 3 to nmax do FF(n) := SF(n) * FF(n-1) end do: for n from 2 to nmax do s2(n):= (-1)*A119951(n-1)*FF(n) end do: seq(s2(n), n=2..nmax);
# End second program.
A120069
Denominators of partial sums of a convergent series involving scaled Catalan numbers A000108.
Original entry on oeis.org
1, 2, 16, 32, 128, 256, 4096, 8192, 32768, 65536, 524288, 1048576, 4194304, 8388608, 268435456, 536870912, 2147483648, 4294967296, 34359738368, 68719476736, 274877906944, 549755813888, 8796093022208
Offset: 1
-
Denominator[Table[Sum[CatalanNumber[k]/2^(2*(k - 1)), {k, 1, n}], {n, 1, 50}]] (* G. C. Greubel, Feb 08 2017 *)
-
for(n=1,50, print1(denominator(sum(k=1,n, binomial(2*k,k)/((k+1)*2^(2*k-2)))), ", ")) \\ G. C. Greubel, Feb 08 2017
A120088
Numerators of partial sums of a series for sqrt(2).
Original entry on oeis.org
3, 11, 23, 179, 365, 1439, 2911, 46147, 93009, 369605, 743409, 5917879, 11887761, 47365319, 95064943, 3032383331, 6082445497, 24264959593, 48649328861, 388310999293, 778263028691, 3106935548009, 6225306416473, 99433372856743, 199189221750317, 795541400400905
Offset: 0
Rationals r(n): [3/2, 11/8, 23/16, 179/128, 365/256, 1439/1024, 2911/2048, 46147/32768,...]
For similar partial sums with positive terms (not alternating) see rationals
A119951/
A120069.
For the partial sums (Sum_{k=0..n} (-1)^k*C(k)/4^k) see
A120788(n)/
A120777(n).
-
[Numerator(1 + (&+[(-1/4)^k*Binomial(2*k,k)/(2*(k+1)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, Mar 27 2018
-
r[n_]:= 1+Sum[(-1/4)^k*CatalanNumber[k]/2, {k, 0, n}]; Numerator[Table[ r[n], {n, 0, 50}]] (* G. C. Greubel, Mar 27 2018 *)
-
{r(n) = 1 + sum(k=0,n, (-1/4)^k*binomial(2*k,k)/(2*(k+1)))};
for(n=0,30, print1(numerator(r(n)), ", ")) \\ G. C. Greubel, Mar 27 2018
Showing 1-3 of 3 results.
Comments