cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A055975 First differences of A003188 (decimal equivalent of the Gray Code).

Original entry on oeis.org

1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 32, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, -16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 64, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, -32, 1, 2, -1, 4
Offset: 1

Views

Author

Alford Arnold, Jul 22 2000

Keywords

Comments

Multiplicative with a(2^e) = 2^e, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris, May 17 2005
a(A091072(n)) > 0; a(A091067(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
In the binary representation of n, clear everything left of the least significant 1 bit, and negate if the bit left of it was set originally. - Ralf Stephan, Aug 23 2013
This sequence is the trace of n in the minimal alternating binary representation of n (defined at A256696). - Clark Kimberling, Apr 07 2015

Examples

			Since A003188 is 0, 1,  3, 2, 6,  7,  5, 4, 12, 13, 15, 14, 10, ...,
sequence begins  1, 2, -1, 4, 1, -2, -1, 8,  1,  2, -1,  4, ... .
		

Crossrefs

Cf. A003188, A006519 (unsigned), A007814.
MASKTRANSi transform of A053644 (conjectural).

Programs

  • Haskell
    a055975 n = a003188 n - a003188 (n-1)
    a055975_list = zipWith (-) (tail a003188_list) a003188_list
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Maple
    nmax:=100: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (-1)^(n+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 27 2013
  • Mathematica
    f[n_]:=BitXor[n,Floor[n/2]];Differences[Array[f,120,0]] (* Harvey P. Dale, Jul 18 2011, applying Robert G. Wilson v's program from A003188 *)
  • PARI
    a(n)=((-1)^((n/2^valuation(n,2)-1)/2)*2^valuation(n,2)) \\ Ralf Stephan
    
  • Python
    def A055975(n): return (n^(n>>1))-((n-1)^(n-1>>1)) # Chai Wah Wu, Jun 29 2022

Formula

a(2n) = 2a(n), a(2n+1) = (-1)^n. G.f. sum(k>=0, 2^k*t/(1+t^2), t=x^2^k). a(n) = 2^A007814(n) * (-1)^((n/2^A007814(n)-1)/2). - Ralf Stephan, Oct 29 2003
a((2*n-1)*2^p) = (-1)^(n+1)*2^p, p >= 0. - Johannes W. Meijer, Jan 27 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 05 2000
Showing 1-1 of 1 results.