cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127275 Expansion of (sqrt(1-4x)-x)/(1-4x).

Original entry on oeis.org

1, 1, 2, 4, 6, -4, -100, -664, -3514, -16916, -77388, -343144, -1490148, -6376616, -26992264, -113317936, -472661434, -1961361076, -8104733884, -33374212936, -137031378124, -561253753336, -2293947547384, -9358755316816, -38121140494564, -155064370272904
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2006

Keywords

Comments

Hankel transform is A127276.
The second self-composition of the g.f. G(x) of A120009 is G(G(x)) = (sqrt(1-4x)-x)/(1-4x) - 1.

Examples

			A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 - 4*x^5 - 100*x^6 - 664*x^7 + ...
		

Crossrefs

Cf. A120009, A120012 (3rd self-composition); A000108 (Catalan).

Programs

  • Maple
    S:= series((sqrt(1-4*x)-x)/(1-4*x),x,31):
    seq(coeff(S,x,i),i=0..30); # Robert Israel, Jan 15 2023
  • PARI
    {a(n)=local(k=2,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)}

Formula

a(n) = C(2n,n) - 4^(n-1) + 0^n/4. - Paul Barry, Jan 10 2007
Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 26 2012
Conjecture verified using the differential equation (4*x-1)^2 * g'(x) + (8*x-2)*g(x) + 1 - 2*x = 0 satisfied by the g.f. - Robert Israel, Jan 15 2023

Extensions

Definition revised by Paul Barry, Jan 10 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A120014 Coefficients of x^n in the n-th iteration of the g.f. of A120009, so that: a(n) = [x^n] { (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2 } for n>=1.

Original entry on oeis.org

1, 2, 9, 60, 530, 5892, 79681, 1276760, 23729310, 502780580, 11974950746, 316917570312, 9230453871756, 293492484431720, 10117826259791025, 375952605020796720, 14980065429077943734, 637215061582781559972
Offset: 1

Views

Author

Paul D. Hanna, Jun 07 2006, Jun 09 2006

Keywords

Comments

a(n) is divisible by n for n>=1; a(n)/n = A120016(n).
Main diagonal of table (A120013) of iterations of A120009.

Examples

			Successive iterations of F(x), the g.f. of A120009, begin:
F(x) = (1)x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = x + (2)x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + 3x^2 + (9)x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + (60)x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 120x^4 + (530)x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 +1164x^5 + (5892)x^6 +...
		

Crossrefs

Cf. A120016 (a(n)/n); A120009, A127275 (g.f.=F(F(x))), A120012 (g.f.=F(F(F(x)))); A000108 (Catalan); A120015, A120020, A120013.

Programs

  • PARI
    a(n)=local(k=n,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)
    
  • PARI
    /* Generated as the n-th self-composition of A120009: */ a(n)=local(F=((1-3*x)*sqrt(1-4*x+x^3*O(x^n)) - (1-x)*(1-4*x))/(2*x^2), G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))
    
  • PARI
    a(n)=n^(n-1)-sum(k=2,n-2,n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!)/n!

Formula

a(n) = [x^n] x*((1-n+n^2) - n^2*(n+1)*x - n*(1-(n+2)*x)*C(x) )/(1-n+n^2*x)^2, where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).
a(n) = n^(n-1) - Sum_{k=2..n-2} n^(k-1)*k*(k-1)*(n-k-1)*(2*n-k-2)!/(n-k)!/n!

A120013 Square table, read by antidiagonals, of coefficients of x^k in the n-th self-composition of the g.f. of A120009, so that: T(n,k) = [x^k] { (x-x^2) o x/(1-n*x) o (1-sqrt(1-4*x))/2 } for n>=1, k>=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 0, 1, 4, 9, 6, -6, 1, 5, 16, 24, -4, -33, 1, 6, 25, 60, 42, -100, -143, 1, 7, 36, 120, 192, -87, -664, -572, 1, 8, 49, 210, 530, 360, -1575, -3514, -2210, 1, 9, 64, 336, 1164, 1955, -1568, -12240, -16916, -8398, 1, 10, 81, 504, 2226, 5892, 3785, -26804, -77730, -77388, -31654
Offset: 1

Views

Author

Paul D. Hanna, Jun 10 2006

Keywords

Examples

			Square table begins:
1, 1, 1, 0, -6, -33, -143, -572, -2210, -8398, ...
1, 2, 4, 6, -4, -100, -664, -3514, -16916, -77388, ...
1, 3, 9, 24, 42, -87, -1575, -12240, -77730, -449994, ...
1, 4, 16, 60, 192, 360, -1568, -26804, -240800, -1804456, ...
1, 5, 25, 120, 530, 1955, 3785, -28900, -508610, -5227110, ...
1, 6, 36, 210, 1164, 5892, 24552, 48258, -577380, -10814388, ...
1, 7, 49, 336, 2226, 13965, 79681, 370216, 733054, -12716578, ...
1, 8, 64, 504, 3872, 28688, 200960, 1276760, 6548320, 13015536, ...
1, 9, 81, 720, 6282, 53415, 437697, 3387636, 23729310, 133234434, ...
1, 10, 100, 990, 9660, 92460, 862120, 7743550, 65644780, 502780580,...
Successive self-compositions of F(x), the g.f. of A120009, start:
F(x) = x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = x + 2x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + 3x^2 + 9x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 60x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 120x^4 + 530x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 +1164x^5 + 5892x^6 +...
		

Crossrefs

Rows: A120009, A127275, A120012; Diagonals: A120014, A120015.

Programs

  • PARI
    {T(n,k)=sum(j=1,k,n^(j-2)*(n-j+1)*j*(2*k-j-1)!/(k-j)!/k!)}

Formula

T(n,k) = Sum_{j=1..k} n^(j-2)*(n-j+1)*j*(2*k-j-1)!/(k-j)!/k! - Paul D. Hanna and Max Alekseyev. Alternate formula: T(n,k) = n^(k-1) - Sum_{j=2..k-2} n^(j-1)*j*(j-1)*(k-j-1)*(2*k-j-2)!/(k-j)!/k!. These formulas also apply to non-integer n.

A120015 Coefficients of x^n in the (n+1)-th self-composition of the g.f. of A120009, so that: a(n) = [x^n] { (x-x^2) o x/(1-(n+1)*x) o (1-sqrt(1-4*x))/2 } for n>=1.

Original entry on oeis.org

1, 3, 16, 120, 1164, 13965, 200960, 3387636, 65644780, 1440018822, 35314018656, 958109355632, 28508766348664, 923461269689985, 32357613376995840, 1219728800410342556, 49225886778689380044, 2118029584754948604618
Offset: 1

Views

Author

Paul D. Hanna, Jun 12 2006

Keywords

Examples

			Successive self-compositions of F(x), the g.f. of A120009, begin:
F(x) = x + x^2 + x^3 - 6x^5 - 33x^6 - 143x^7 - 572x^8 - 2210x^9 +...
F(F(x)) = (1)x + 2x^2 + 4x^3 + 6x^4 - 4x^5 - 100x^6 - 664x^7 +...
F(F(F(x))) = x + (3)x^2 + 9x^3 + 24x^4 + 42x^5 - 87x^6 - 1575x^7 +...
F(F(F(F(x)))) = x + 4x^2 + (16)x^3 + 60x^4 + 192x^5 + 360x^6 +...
F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + (120)x^4 + 530x^5 +1955x^6 +...
F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 +210x^4 + (1164)x^5 +5892x^6+...
		

Crossrefs

Cf. A120014; A120009, A127275 (g.f.=F(F(x))), A120012 (g.f.=F(F(F(x)))); A120020.

Programs

  • PARI
    {a(n)=sum(j=1, n,(n+1)^(j-2)*(n-j+2)*j*(2*n-j-1)!/(n-j)!/n!)}

Formula

a(n) = Sum_{j=1..n} (n+1)^(j-2)*(n-j+2)*j*(2*n-j-1)!/(n-j)!/n! - Paul D. Hanna and Max Alekseyev.
Showing 1-4 of 4 results.