cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120101 Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).

Original entry on oeis.org

1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The rows give the coefficients of polynomials arising in the integration of x^(2m)/sqrt(4-x^2), m >= 0.

Examples

			Triangle begins:
       1;
       6,     1;
      30,     5,     1;
     420,    70,    14,    3;
    1260,   210,    42,    9,   2;
   13860,  2310,   462,   99,  22,   5;
  180180, 30030,  6006, 1287, 286,  65, 15;
  360360, 60060, 12012, 2574, 572, 130, 30, 7;
		

Crossrefs

First column is A119634. Second column is A051538. Main diagonal is A068553. Subdiagonal is A119636. Inverse is A120113. Row sums are A120106. Diagonal sums are A120107.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    [Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
    
  • Maple
    T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
  • Mathematica
    Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
  • SageMath
    def A120101(n,k):
        return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1))
    flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023

Formula

Number triangle T(n,k) = [k<=n] * lcm(1,...,2n+2)/((k+1)*binomial(2k+2, k+1)).