cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120105 Number triangle T(n,k) = lcm(1,..,2*n+2)/lcm(1,..,2*k+2).

Original entry on oeis.org

1, 6, 1, 30, 5, 1, 420, 70, 14, 1, 1260, 210, 42, 3, 1, 13860, 2310, 462, 33, 11, 1, 180180, 30030, 6006, 429, 143, 13, 1, 360360, 60060, 12012, 858, 286, 26, 2, 1, 6126120, 1021020, 204204, 14586, 4862, 442, 34, 17, 1, 116396280, 19399380, 3879876, 277134, 92378, 8398, 646, 323, 19, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Examples

			Triangle begins:
       1;
       6,     1;
      30,     5,    1;
     420,    70,   14,   1;
    1260,   210,   42,   3,   1;
   13860,  2310,  462,  33,  11,   1;
  180180, 30030, 6006, 429, 143,  13,  1;
		

Crossrefs

First column is A119634. Second column is A051538. Inverse is A120111.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/Lcm(List([1..2*k+2],i->i))))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    [Lcm([1..2*n+2])/Lcm([1..2*k+2]): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2023
    
  • Maple
    T:= (n,k)-> ilcm(seq(q,q=1..2*n+2))/ilcm(seq(r,r=1..2*k+2)):
    seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
  • Mathematica
    T[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]);
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 04 2023 *)
  • SageMath
    def f(n): return lcm(range(1,2*n+3))
    def A120105(n,k):
        return f(n)//f(k)
    flatten([[A120105(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 04 2023

Formula

Number triangle T(n,k) = [k<=n] + lcm(1,..,2n+2)/lcm(1,..,2k+2).
From G. C. Greubel, May 04 2023: (Start)
Sum_{k=0..n} T(n, k) = A120106(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120107(n). (End)