cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120108 Number triangle T(n,k) = lcm(1,..,n+1)/lcm(1,..,k+1).

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 12, 6, 2, 1, 60, 30, 10, 5, 1, 60, 30, 10, 5, 1, 1, 420, 210, 70, 35, 7, 7, 1, 840, 420, 140, 70, 14, 14, 2, 1, 2520, 1260, 420, 210, 42, 42, 6, 3, 1, 2520, 1260, 420, 210, 42, 42, 6, 3, 1, 1, 27720, 13860, 4620, 2310, 462, 462, 66, 33, 11, 11, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Examples

			Triangle begins:
    1;
    2,   1;
    6,   3,  1;
   12,   6,  2,  1;
   60,  30, 10,  5, 1;
   60,  30, 10,  5, 1, 1;
  420, 210, 70, 35, 7, 7, 1;
		

Crossrefs

First column is A003418(n+1). Second column is A025555. Row sums are A120109. Diagonal sums are A120110. Inverse is A120111.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Lcm(List([1..n+1],i->i))/Lcm(List([1..k+1],i->i))))); # Muniru A Asiru, Feb 26 2019
    
  • Magma
    A120108:= func< n,k | Lcm([1..n+1])/Lcm([1..k+1]) >;
    [A120108(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2023
    
  • Maple
    T:= (n,k)-> ilcm(seq(q,q=1..n+1))/ilcm(seq(r,r=1..k+1)):
    seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Feb 26 2019
  • Mathematica
    f[n_] := f[n] = LCM @@ Range[n];
    T[n_, k_] := f[n+1]/f[k+1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2021 *)
  • SageMath
    def f(n): return lcm(range(1,n+2))
    def A120108(n,k):
        return f(n)/f(k)
    flatten([[A120108(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 04 2023

Formula

Number triangle T(n,k) = [k<=n]*lcm(1,..,n+1)/lcm(1,..,k+1).

A120110 Diagonal sums of number triangle A120108.

Original entry on oeis.org

1, 2, 7, 15, 67, 92, 461, 1065, 3016, 3956, 29478, 42231, 379107, 547556, 603421, 991923, 12709228, 18540622, 241033695, 352271227, 389226278, 407797820, 5532937710, 8097345425, 30368363481, 41503874738, 98701094676, 127342427241
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..30],n->Sum([0..Int(n/2)],k->Lcm(List([1..n-k+1],i->i))/Lcm(List([1..k+1],i->i)))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    A120108:= func< n,k | Lcm([1..n+1])/Lcm([1..k+1]) >;
    [(&+[A120108(n-k,k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
    
  • Mathematica
    A120108[n_, k_]:= LCM@@Range[n+1]/(LCM@@Range[k+1]);
    A120110[n_]:= Sum[A120108[n-k,k], {k,0,n/2}];
    Table[A120110[n], {n,0,50}] (* G. C. Greubel, May 04 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, lcm([1..n-k+1])/lcm([1..k+1])); \\ Michel Marcus, Mar 04 2019
    
  • SageMath
    def f(n): return lcm(range(1,n+2))
    def A120110(n):
        return sum(f(n-k)//f(k) for k in range((n//2)+1))
    [A120110(n) for n in range(51)] # G. C. Greubel, May 04 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} lcm(1,..,n-k+1)/lcm(1,..,k+1).
Showing 1-2 of 2 results.