A120110 Diagonal sums of number triangle A120108.
1, 2, 7, 15, 67, 92, 461, 1065, 3016, 3956, 29478, 42231, 379107, 547556, 603421, 991923, 12709228, 18540622, 241033695, 352271227, 389226278, 407797820, 5532937710, 8097345425, 30368363481, 41503874738, 98701094676, 127342427241
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..30],n->Sum([0..Int(n/2)],k->Lcm(List([1..n-k+1],i->i))/Lcm(List([1..k+1],i->i)))); # Muniru A Asiru, Mar 04 2019
-
Magma
A120108:= func< n,k | Lcm([1..n+1])/Lcm([1..k+1]) >; [(&+[A120108(n-k,k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
-
Mathematica
A120108[n_, k_]:= LCM@@Range[n+1]/(LCM@@Range[k+1]); A120110[n_]:= Sum[A120108[n-k,k], {k,0,n/2}]; Table[A120110[n], {n,0,50}] (* G. C. Greubel, May 04 2023 *)
-
PARI
a(n) = sum(k=0, n\2, lcm([1..n-k+1])/lcm([1..k+1])); \\ Michel Marcus, Mar 04 2019
-
SageMath
def f(n): return lcm(range(1,n+2)) def A120110(n): return sum(f(n-k)//f(k) for k in range((n//2)+1)) [A120110(n) for n in range(51)] # G. C. Greubel, May 04 2023
Formula
a(n) = Sum_{k=0..floor(n/2)} lcm(1,..,n-k+1)/lcm(1,..,k+1).