cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120110 Diagonal sums of number triangle A120108.

Original entry on oeis.org

1, 2, 7, 15, 67, 92, 461, 1065, 3016, 3956, 29478, 42231, 379107, 547556, 603421, 991923, 12709228, 18540622, 241033695, 352271227, 389226278, 407797820, 5532937710, 8097345425, 30368363481, 41503874738, 98701094676, 127342427241
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..30],n->Sum([0..Int(n/2)],k->Lcm(List([1..n-k+1],i->i))/Lcm(List([1..k+1],i->i)))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    A120108:= func< n,k | Lcm([1..n+1])/Lcm([1..k+1]) >;
    [(&+[A120108(n-k,k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
    
  • Mathematica
    A120108[n_, k_]:= LCM@@Range[n+1]/(LCM@@Range[k+1]);
    A120110[n_]:= Sum[A120108[n-k,k], {k,0,n/2}];
    Table[A120110[n], {n,0,50}] (* G. C. Greubel, May 04 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, lcm([1..n-k+1])/lcm([1..k+1])); \\ Michel Marcus, Mar 04 2019
    
  • SageMath
    def f(n): return lcm(range(1,n+2))
    def A120110(n):
        return sum(f(n-k)//f(k) for k in range((n//2)+1))
    [A120110(n) for n in range(51)] # G. C. Greubel, May 04 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} lcm(1,..,n-k+1)/lcm(1,..,k+1).