cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120151 a(n) = 5 + floor( Sum_{j=1..n-1} a(j)/3 ).

Original entry on oeis.org

5, 6, 8, 11, 15, 20, 26, 35, 47, 62, 83, 111, 148, 197, 263, 350, 467, 623, 830, 1107, 1476, 1968, 2624, 3499, 4665, 6220, 8293, 11058, 14744, 19658, 26211, 34948, 46597, 62130, 82840, 110453, 147271, 196361, 261815, 349086, 465448, 620598, 827464, 1103285
Offset: 1

Views

Author

Graeme McRae, Jun 10 2006

Keywords

Crossrefs

Programs

  • Magma
    function f(n,a,b)
      t:=0;
        for k in [1..n-1] do
           t+:= a+Floor((b+t)/3);
         end for;
      return t;
    end function;
    g:= func< n,a,b | f(n+1,a,b)-f(n,a,b) >;
    A120151:= func< n | g(n,5,0) >;
    [A120151(n): n in [1..60]]; // G. C. Greubel, Jun 15 2023
    
  • Maple
    a:= proc(n) option remember;
           5+floor(add(a(j)/3, j=1..n-1))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 16 2023
  • Mathematica
    nxt[{t_,n_}]:=Module[{c=Floor[(15+t)/3]},{t+c,c}]; NestList[nxt,{5,5},40][[All,2]] (* Harvey P. Dale, Jun 19 2022 *)
  • SageMath
    @CachedFunction
    def A120151(n): return 5 + (sum(A120151(k) for k in range(1, n)))//3
    [A120151(n) for n in range(1, 61)] # G. C. Greubel, Jun 15 2023