A120285 Numerator of harmonic number H(p-1) = Sum_{k=1..p-1} 1/k for prime p.
1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789
Offset: 1
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.
Links
- Robert Israel, Table of n, a(n) for n = 1..342
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
Programs
-
Maple
f3:=proc(n) local p; p:=ithprime(n); numer(add(1/i,i=1..p-1)); end proc; [seq(f3(n),n=1..20)];
-
Mathematica
Numerator[Table[Sum[1/k,{k,1,Prime[n]-1}],{n,1,20}]] Table[HarmonicNumber[p],{p,Prime[Range[20]]-1}]//Numerator (* Harvey P. Dale, May 18 2023 *)
-
PARI
a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k)); \\ Michel Marcus, Dec 25 2018
Comments