cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120297 Sum of all matrix elements of n X n matrix M(i,j) = Fibonacci(i+j-1).

Original entry on oeis.org

1, 5, 20, 65, 193, 544, 1489, 4005, 10660, 28193, 74273, 195200, 512257, 1343077, 3519412, 9219105, 24144289, 63224096, 165544721, 433437125, 1134810436, 2971065025, 7778499265, 20364618240, 53315655553, 139582833989
Offset: 1

Views

Author

Alexander Adamchuk, Jul 11 2006

Keywords

Comments

p^2 divides a(p-1) for p = 5, 11, 19, 29, 31, 41, 59, 61, 71, ... = A038872 (Primes congruent to {0, 1, 4} mod 5), also odd primes p such that where 5 is a square mod p. All squared prime divisors of a(n) also belong to A038872.

Examples

			Matrix begins:
  1  1  2  3  5
  1  2  3  5  8
  2  3  5  8 13
  3  5  8 13 21
  5  8 13 21 34
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]

Formula

a(n) = Sum_{j=1..n} Sum_{i=1..n} Fibonacci(i+j-1).
a(n) = Fibonacci(2*n+3) - 2*Fibonacci(n+3) + 2. - Vladeta Jovovic, Jul 21 2006
G.f.: (1 - x^3 + 2*x^2)/((x-1)*(x^2 + x - 1)*(x^2 - 3*x + 1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009