A120297 Sum of all matrix elements of n X n matrix M(i,j) = Fibonacci(i+j-1).
1, 5, 20, 65, 193, 544, 1489, 4005, 10660, 28193, 74273, 195200, 512257, 1343077, 3519412, 9219105, 24144289, 63224096, 165544721, 433437125, 1134810436, 2971065025, 7778499265, 20364618240, 53315655553, 139582833989
Offset: 1
Keywords
Examples
Matrix begins: 1 1 2 3 5 1 2 3 5 8 2 3 5 8 13 3 5 8 13 21 5 8 13 21 34
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Sum[Sum[Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]
Formula
a(n) = Sum_{j=1..n} Sum_{i=1..n} Fibonacci(i+j-1).
a(n) = Fibonacci(2*n+3) - 2*Fibonacci(n+3) + 2. - Vladeta Jovovic, Jul 21 2006
G.f.: (1 - x^3 + 2*x^2)/((x-1)*(x^2 + x - 1)*(x^2 - 3*x + 1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009
Comments