cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A119997 Sum of all matrix elements of n X n matrix M[i,j] = (-1)^(i+j)*Fibonacci[i+j-1].

Original entry on oeis.org

1, 1, 4, 5, 17, 32, 97, 225, 628, 1573, 4225, 10880, 28769, 74849, 196708, 513765, 1347025, 3523360, 9229441, 24154625, 63251156, 165571781, 433507969, 1134881280, 2971250497, 7778684737, 20365103812, 53316141125, 139584105233, 365434903328, 956722661665
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Comments

Prime p divides a(p-1) for p={5,11,19,29,31,41,59,61,71,...} = A038872[n] Primes congruent to {0, 1, 4} mod 5. Also odd primes where 5 is a square mod p. p^2 divides a(p-1) for prime p={11,19,29,31,41,59,61,71,...} = A045468[n] Primes congruent to {1, 4} mod 5. Square prime divisors of a(n) up to n=50 are{2,3,5,7,11,13,19,23,29,31,41,47,89,101,139,151,199,211,461,521,3571,9349}, It appears that square prime divisors of a(n) belong to A061446[n] Primitive part of Fibonacci(n), A001578[n] Smallest primitive prime factor of Fibonacci number F(n) and A072183[n] Sequence arising from factorization of the Fibonacci numbers. Sum[Sum[Fibonacci[i+j-1],{i,1,n}],{j,1,n}] = A120297[n]. Sum[Sum[i+j-1,{i,1,n}],{j,1,n}] = n^3. Sum[Sum[(-1)^(i+j)*(i+j-1),{i,1,n}],{j,1,n}] = n for odd n and = 0 for even n.

Examples

			Matrix begins:
1 -1 2 -3 5
-1 2 -3 5 -8
2 -3 5 -8 13
-3 5 -8 13 -21
5 -8 13 -21 34
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, (-1)^(i+j)*fibonacci(i+j-1))) \\ Colin Barker, Mar 26 2015
    
  • PARI
    Vec(-x*(x^3+2*x-1)/((x-1)*(x^2-3*x+1)*(x^2-x-1)) + O(x^100)) \\ Colin Barker, Mar 26 2015

Formula

a(n) = Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}].
a(n) = 3*a(n-1)+a(n-2)-7*a(n-3)+5*a(n-4)-a(n-5) for n>5. - Colin Barker, Mar 26 2015
G.f.: -x*(x^3+2*x-1) / ((x-1)*(x^2-3*x+1)*(x^2-x-1)). - Colin Barker, Mar 26 2015

A120537 Sum of all matrix elements of n X n matrix M[i,j] = Lucas[i+j-1], (i,j = 1..n), where Lucas[n] = A000032[n] = Fibonacci[n-1] + Fibonacci[n+1].

Original entry on oeis.org

1, 11, 44, 145, 431, 1216, 3329, 8955, 23836, 63041, 166079, 436480, 1145441, 3003211, 7869644, 20614545, 53988271, 141373376, 370169249, 969194875, 2537513276, 6643503361, 17393253119, 45536670720, 119217430081
Offset: 1

Views

Author

Alexander Adamchuk, Aug 07 2006

Keywords

Comments

5 divides a(4k). a(n) is prime for n = {2,5,7,17,19,31,439,545,...}. p^2 divides a(p-1) for p = {11,19,29,31,41,59,61,71,...} = A045468[n] Primes congruent to {1, 4} mod 5, also odd primes where 5 is a square mod p except 5. Square prime divisors of a(n) up to n=70 are p = {2,3,7,11,13,19,23,29,31,41,47,59,61,71,89,101,139,151,199,233,281,461,521,911,1597,2207,3571,5779,9349,9901,19489,3010349,...} that appear to be the prime factors of Fibonacci numbers.

Examples

			Matrix begins:
1 3 4 7 11...
3 4 7 11 18...
4 7 11 18 29...
7 11 18 29 47...
11 18 29 47 76...
...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Fibonacci[i+j-2]+Fibonacci[i+j],{i,1,n}],{j,1,n}],{n,1,70}] Table[(Fibonacci[2n+2]+Fibonacci[2n+4])-2(Fibonacci[n+2]+Fibonacci[n+4])+4,{n,1,70}]

Formula

a(n) = Sum[ Sum[ Fibonacci[i+j-2] + Fibonacci[i+j],{i,1,n}],{j,1,n}]. a(n) = Lucas[2n+3] - 2*Lucas[n+3] + 4, where Lucas[k] = Fibonacci[k-1] + Fibonacci[k+1].
G.f.:(1+x^3-4*x^2+6*x)/((x-1)*(x^2+x-1)*(x^2-3*x+1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009]

A129762 Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2].

Original entry on oeis.org

1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216
Offset: 1

Views

Author

Alexander Adamchuk, May 15 2007, Oct 11 2007

Keywords

Comments

p^3 divides a(p-1) for prime p = {11,19,29,31,41,59,61,71,79,89,...} = A045468 Primes congruent to {1, 4} mod 5; also primes p that divide Fibonacci(p-1). a(n) is prime for n = {2,7,19,...}.
a(n) is prime for n = {2, 7, 19, 47, 175, 179, ...}. The formula a(n) = F(3n+4) - 3F(2n+4) + 3F(n+4) - 3 and its generalization for k-dimensional hypercubes with elements M(i,j,...) = F(i+j+...-k+1) was stated and proved by the user 1istik_figi in private communication at LiveJournal on Oct 10 2007. The k-dimensional formula is a(n) = Sum[(-1)^i*Binomial[k,i]*Fibonacci[(k-i)*n+k+1],{i,0,k}]. Conjecture: if prime p divides F(p-1) then p^k divides a(n) in k-dimensional case.

Crossrefs

Cf. A120297 = Sum of all matrix elements of n X n matrix M[i, j] = Fibonacci[i+j-1]. Cf. A000045, A045468, A001924, A062381.

Programs

  • Magma
    [Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011
  • Mathematica
    Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ], {n,1,30} ]
    Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n,1,50} ]
    LinearRecurrence[{9,-26,24,6,-14,1,1},{1,13,104,615,3149,14912,67537},30] (* Harvey P. Dale, Aug 22 2021 *)

Formula

a(n) = Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ].
a(n) = Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3.
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3) + 6*a(n-4) - 14*a(n-5) + a(n-6) + a(n-7). - Joerg Arndt, Apr 21 2011
G.f.: -x*(x^5 - 7*x^3 + 13*x^2 + 4*x + 1)/((x-1)*(x^2 - 3*x + 1)*(x^2 + x - 1)*(x^2 + 4*x - 1)). - Colin Barker, Aug 10 2012
Showing 1-3 of 3 results.