A120301 Absolute value of numerator of the sum of all elements of the n X n matrix M with M[i,j] = (-1)^(i+j)*i/j for i,j = 1..n.
1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 167324635, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 54260455193
Offset: 1
Examples
The absolute values of the first few fractions are 1, 1/2, 5/3, 7/6, 47/20, 37/20, 319/105, 533/210, 1879/504, ... = A120301/A334724. - _Petros Hadjicostas_, May 09 2020
Programs
-
Mathematica
Abs[Numerator[Table[Sum[Sum[(-1)^(i+j)*i/j,{i,1,n}],{j,1,n}],{n,1,50}]]]
-
PARI
a(n) = abs(numerator(sum(j=1, n, sum(i=1, n, (-1)^(i+j)*i/j)))); \\ Michel Marcus, May 09 2020
Formula
a(n) = abs(numerator(Sum_{j=1..n} Sum_{i=1..n} (-1)^(i+j)*i/j)).
Comments