cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123944 Numbers k such that A120301(k) differs from A058313(k).

Original entry on oeis.org

19, 28, 87, 99, 104, 196, 203, 210, 222, 228, 231, 238, 281, 328, 367, 499, 579, 620, 888, 967, 1036, 1147, 1204, 1352, 1372, 1403, 1419, 1430, 1470, 1481, 1498, 1503, 1666, 1693, 1907, 2211, 2359, 2440, 2499, 2521, 2556, 2678, 2948, 3407, 3467, 3504, 3537, 3892, 4046, 4079, 4108
Offset: 1

Views

Author

Alexander Adamchuk, Nov 22 2006

Keywords

Comments

The ratio A120301(n)/A058313(n) = 1 for most n.
The ratio A120301(a(n))/A058313(a(n)) = {5, 7, 11, 5, 13, 7, 17, 7, 37, 10, 29, 119, 47, 41, 23, 5, 29, 31, 37, 11, 37, 41, 43, 13, 7, 13, 71, 13, 49, 13, 7,...} is prime for the most a(n).
The first composite ratio A120301(a(n))/A058313(a(n)) corresponds to a(n) = a(29) = 1470 because A120301(1470)/A058313(1470) = 49 = 7^2. [Edited by Petros Hadjicostas, May 09 2020]

Crossrefs

Programs

  • Mathematica
    f=0; Do[f=f+(-1)^(n+1)*1/n; g=Abs[(2(-1)^n*n+(-1)^n-1)/4]*f; rfg=Numerator[g]/Numerator[f]; If[(rfg==1)==False, Print[{n,rfg}]], {n,1,15000}]
  • PARI
    isok(n) = my(sn = sum(k=1, n, (-1)^(k+1)/k)); numerator(sn) != abs(numerator((-1/4) * (2*(-1)^n*n + (-1)^n - 1)*sn));
    for (n=1, 4200, if (isok(n), print1(n, ", "))); \\ Michel Marcus, May 10 2020

Extensions

a(47)-a(51) from Petros Hadjicostas, May 09 2020

A167372 a(n) = A120301(A123944(n))/A058313(A123944(n)).

Original entry on oeis.org

5, 7, 11, 5, 13, 7, 17, 7, 37, 19, 29, 119, 47, 41, 23, 5, 29, 31, 37, 11, 37, 41, 43, 13, 7, 13, 71, 13, 49, 13, 7, 47, 7, 7, 53, 79, 59, 61, 5, 97, 71, 103, 67, 71, 17, 73, 61, 139, 17, 17, 79, 19, 19, 19, 19, 83, 151, 89, 29, 97, 263, 29, 101, 103, 223, 107, 109, 271, 37, 23, 113, 359
Offset: 1

Views

Author

Alexander Adamchuk, Nov 02 2009

Keywords

Comments

The ratio A120301(n)/A058313(n) = 1 for most n.
a(n) is prime for most n.
The first composite ratio a(12) = 119 = 7*17 corresponds to A123944(12) = 238.
The next two composite ratios a(29) = a(76) = 49 = 7^2 correspond to A123944(29) = 1470 and A123944(76) = 10290. [Edited by Petros Hadjicostas, May 09 2020]

Crossrefs

Programs

  • Mathematica
    f = 0; Do[f = f + (-1)^(n + 1) * 1/n; g = Abs[(2(-1)^n * n + (-1)^n - 1)/4] * f; rfg = Numerator[g]/Numerator[f]; If[(rfg == 1) == False, Print[rfg]], {n, 1500}]
  • PARI
    lista(nn) = {for (n=1, nn, my(sn = sum(k=1, n, (-1)^(k+1)/k)); if ((s=numerator(sn)) != (ss=abs(numerator((-1/4) * (2*(-1)^n*n + (-1)^n - 1) * sn))), print1(ss/s, ", ")););} \\ Michel Marcus, May 10 2020

Extensions

a(32)-a(46) from Petros Hadjicostas, May 09 2020, using Michel Marcus's program and the data from A123944
a(47)-a(72) from Petros Hadjicostas, May 09 2020, using the Mathematica program

A334724 Denominator of the sum of all elements of the n X n matrix M with M[i,j] = (-1)^(i+j)*i/j for i,j = 1..n.

Original entry on oeis.org

1, 2, 3, 6, 20, 20, 105, 210, 504, 504, 4620, 4620, 51480, 51480, 9009, 18018, 272272, 272272, 23279256, 23279256, 21162960, 21162960, 446185740, 446185740, 2059318800, 2059318800, 5736673800, 5736673800, 22181805360, 22181805360, 644658718275, 1289317436550, 1213475234400
Offset: 1

Views

Author

Petros Hadjicostas, May 09 2020

Keywords

Examples

			The absolute values of the first few fractions are 1, 1/2, 5/3, 7/6, 47/20, 37/20, 319/105, 533/210, 1879/504, ... = A120301/A334724.
		

Crossrefs

Cf. A120301 (absolute values of numerators).

Programs

  • PARI
    a(n) = denominator(sum(j=1, n, sum(i=1, n, (-1)^(i+j)*i/j))); \\ Michel Marcus, May 09 2020

Extensions

More terms from Michel Marcus, May 09 2020
Showing 1-3 of 3 results.