A120303 Largest prime factor of Catalan number A000108(n).
2, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 2
Keywords
Examples
G.f. = 2*x^2 + 5*x^3 + 7*x^4 + 7*x^5 + 11*x^6 + 13*x^7 + 13*x^8 + 17*x^9 + ...
Links
- Gennady Eremin, Table of n, a(n) for n = 2..800
- Gennady Eremin, Factoring Catalan numbers, arXiv:1908.03752 [math.NT], 2019.
Programs
-
Mathematica
Table[Max[FactorInteger[(2n)!/n!/(n+1)! ]],{n,2,100}] FactorInteger[CatalanNumber[#]][[-1,1]]&/@Range[2,70] (* Harvey P. Dale, May 02 2017 *)
-
PARI
a(n) = vecmax(factor(binomial(2*n, n)/(n+1))[,1]); \\ Michel Marcus, Nov 14 2015
-
PARI
a(n)=if(n>2,precprime(2*n),2) \\ Charles R Greathouse IV, Nov 17 2015
-
Python
from gmpy2 import is_prime A120303 = [2] for n in range(3, 801): for k in range(2*n-1, n, -2): if is_prime(k, n): A120303.append(k) break for n in range(len(A120303)): print(n+2, A120303[n]) # Gennady Eremin, Mar 17 2021
Formula
G.f.: A(x) - x^2, where A(x) is the g.f. of A060265. - Gennady Eremin, Mar 02 2021
Comments