A120380 Number of partitions of n*(n+1).
1, 2, 11, 77, 627, 5604, 53174, 526823, 5392783, 56634173, 607163746, 6620830889, 73232243759, 819876908323, 9275102575355, 105882246722733, 1218374349844333, 14118662665280005, 164637479165761044, 1930656072350465812, 22755290216580025259, 269435605212954994471
Offset: 0
Keywords
Examples
a(2)=11 because the number of partitions of 6 is 11.
Links
- Henry Bottomley, Partition and composition calculator.
- G. P. Michon, Partition Function
Programs
-
Maple
with(combinat); [seq(numbpart(n*(n+1)),n=1..20)]; with(combinat): seq(numbpart(n*(n+1)),n=0..21);
-
Mathematica
Table[PartitionsP[n*(n+1)],{n,0,21}] (* James C. McMahon, Sep 30 2024 *)
-
PARI
a(n)=numbpart(n^2+n) /* Michael Somos, Jul 24 2006 */