A120434 Triangle read by rows: counts permutations by number of big descents.
2, 4, 2, 8, 14, 2, 16, 66, 36, 2, 32, 262, 342, 82, 2, 64, 946, 2416, 1436, 176, 2, 128, 3222, 14394, 16844, 5364, 366, 2, 256, 10562, 76908, 156190, 99560, 18654, 748, 2, 512, 33734, 381566, 1242398, 1378310, 528818, 61946, 1514, 2
Offset: 2
Examples
Table begins n\ k| 0 1 2 3 4 5 ----+--------------------------------- 2 | 2 3 | 4 2 4 | 8 14 2 5 | 16 66 36 2 6 | 32 262 342 82 2 7 | 64 946 2416 1436 176 2 The permutation (5,1,4,2,3) has big descents at i=1 and i=3. T(3,1)=2 counts (3,1,2) and (2,3,1).
References
- J. Riordan, An introduction to combinatorial analysis, J. Wiley, 1958.
Links
- J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013-2015.
- Mark Conger, - A refinement of the Eulerian polynomials and the joint distribution of pi(1) and Des(pi) in S_n, arXiv:math/0508112 [math.CO], 2005.
- D. Foata and M. Schutzenberger, Théorie Géometrique des Polynômes Eulériens, Lecture Notes in Math., no.138, Springer Verlag 1970; arXiv:math/0508232 [math.CO], 2005.
- Tanya Khovanova and Rich Wang, Ending States of a Special Variant of the Chip-Firing Algorithm, arXiv:2302.11067 [math.CO], 2023.
Crossrefs
Programs
-
Maple
U := proc(n,k) option remember: if k < 0 or k > n then 0 elif n = 0 then 1 else (k+2)*U(n-1, k) + (n-k)*U(n-1, k-1) fi end: T_row := n -> seq(U(n-1,k), k = 0..n-2): for n from 2 to 7 do T_row(n) od; # Peter Luschny, Oct 15 2017
-
Mathematica
a[0,0] = 1; a[1,0] = 1; a[n_,k_]/;n<=1 && k>=1 := 0 a[n_,k_]/;k>=n-1>=1 || k<0 := 0 a[n_,k_]/;0<=k<=n-2 := a[n,k] = (k+1)Sum[a[i,k],{i,0,n-1}] + Sum[(i-k)a[i,k-1],{i,n-1}] Table[a[n,k],{n,0,10},{k,0, Max[0,n-2]}]
Formula
T(n,k) = Sum_{j=0..k} (-1)^j*(k + 1 - j)*binomial(n + 1, j)*(k + 2 - j)^(n - 1). The generating function F(x,y) := Sum_{n>=0,k>=0} T(n+2,k)*(x^n/n!)*y^k is given by F(x,y) = 2E^(2x(1-y)) G(x,y)^3 where G(x,y) := (1 - y)/(1 - E^(x(1 - y)) y) is 1 + Sum_{n>=1,k>=1} a(n,k)*(x^n/n!)*y^k and a(n,k) are the Eulerian numbers A008292. Note the offsets S(n+1) and T(n+2) in the definition of their g.f.s. A recurrence is given in the Mathematica code below.
From Peter Bala, Sep 19 2008: (Start)
The e.g.f. has the form (A(x,t))^2 = 1 + 2*t + (4 + 2*x)*t^2/2! + (8 + 14*x + 2*x^2)*t^3/3! + ..., where A(x,t) = (1 - x)/(exp(t*x - t) - x) = 1 + t + (1 + x)*t^2/2! + (1 + 4x + x^2)*t^3/3! + ... is the e.g.f. for the Eulerian numbers A008292.
Define the row polynomials R(n,x) := Sum_{k=0..n-2} T(n,k)*x^k. Then x^2*R(n,x) = A(n,x) + (x-1)*A(n-1,x), where the A(n,x) are the Eulerian polynomials. For example, when n = 4, R(4,x) = (1/x^2)*{(x + 11*x^2 + 11*x^3 + x^4) + (x-1)*(x + 4*x^2 + x^3)} = 8 + 14*x + 2*x^2.
The row polynomials are also related to the Eulerian polynomials via differentiation. For example, d/dx[(1 + 4*x + x^2)/(1-x)^4] = (8 + 14*x + 2*x^2)/(1-x)^5 and d/dx[(1 + 11*x + 11*x^2 + x^3)/(1-x)^5] = (16 + 66*x + 36*x^2 + 2*x^3)/(1-x)^6.
Let p be a permutation in the symmetric group S_n. Let cyc(p) denote the number of cycles of p. Let exc(p) denote the number of excedances of p. Then R(n+1,x) = Sum_{p in S_n} 2^cyc(p)*x^exc(p) [Foata & Schutzenberger p. 40]. For example, for n = 2, the identity permutation (1,2) has 2 cycles and no excedances and so contributes 4 to the sum, while the transposition (2,1) has a single cycle and one excedance and contributes 2*x to the sum; hence R(3,x) = 4 + 2*x.
R(n+1,x) = Sum_{k = 1..n} (k+1)!*Stirling2(n,k)*(x-1)^(n-k) for n = 1,2,... (see [Riordan p. 214]).
Worpitzky type identities:
Sum_{k = 0..n-2} T(n,k)*binomial(x+k,n) = x*(x-1)^(n-1);
Sum_{k = 0..n-2} T(n,n-2-k)*binomial(x+k,n) = (x-1)*x^(n-1). (End)
If enumerated like the Eulerian numbers by Knuth (A173018) with 1 prepended, i.e., as 1; 2, 0; 4, 2, 0; 8, 14, 2, 0; ... with 0 <= k <= n the numbers have the recurrence (k+2)*U(n-1, k) + (n-k)*U(n-1, k-1). - Peter Luschny, Oct 15 2017
Comments