cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A001804 a(n) = n! * C(n,2).

Original entry on oeis.org

2, 18, 144, 1200, 10800, 105840, 1128960, 13063680, 163296000, 2195424000, 31614105600, 485707622400, 7933224499200, 137305808640000, 2510734786560000, 48373490221056000, 979563176976384000, 20801312169910272000, 462251381553561600000
Offset: 2

Views

Author

Keywords

Comments

Number of big descents in all permutations of [n+1]. A big descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) >= 2. Example: a(2)=2 because there are 2 big descents in the permutations 123, 132, 213, 23\1, 3\12, 321 of {1,2,3} (shown by a \). a(n)=Sum(k*A120434(n+1,k),k=0..n-1). - Emeric Deutsch, Oct 01 2006
a(n)/2 counts the total number of inversions in all the permutations of the set [n]; see A001809. - Peter Bala, Feb 28 2013
Equivalently, number of mappings f from a set X of n elements into itself such that f(X) has n-1 elements. - Robert FERREOL, Mar 14 2016

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(n!*binomial(n,2),n=2..20); # Emeric Deutsch, Oct 01 2006
    a:=n->sum((n-j)*n!, j=1..n): seq(a(n), n=2..22); # Zerinvary Lajos, Apr 29 2007
    restart: G(x):=x^2/(1-x)^3: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=2..16); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[n! Binomial[n, 2], {n, 2, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    a(n) = n!*binomial(n, 2); \\ Michel Marcus, Mar 14 2016

Formula

E.g.f.: x^2/(1-x)^3. - Geoffrey Critzer, Aug 19 2012
a(n) = 2 * A001809(n).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi/2)*n^(n+5/2)/exp(n).
Sum_{n>=2} 1/a(n) = 2*(3 - exp(1)) = 0.563436343081909529... (End)

A123513 Triangle read by rows: T(n,k) is the number of permutations of [n] having k small descents (n >= 1; 0 <= k <= n-1). A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 11, 9, 3, 1, 53, 44, 18, 4, 1, 309, 265, 110, 30, 5, 1, 2119, 1854, 795, 220, 45, 6, 1, 16687, 14833, 6489, 1855, 385, 63, 7, 1, 148329, 133496, 59332, 17304, 3710, 616, 84, 8, 1, 1468457, 1334961, 600732, 177996, 38934, 6678, 924, 108, 9, 1
Offset: 1

Views

Author

Emeric Deutsch, Oct 02 2006

Keywords

Comments

This triangle is essentially A010027 (ascending pairs in permutations of [n]) with a different offset. The same triangle gives the number of permutations of [n] having k unit ascents (n >= 1; 0 <= k <= n-1). For permutations sorted by number of non-unitary (i.e., > 1) descents (also called "big" descents), see A120434. For permutations sorted by number of unitary moves (i.e., ascent or descent), see A001100. - Olivier Gérard, Oct 09 2007
With offsets n=0 (k=0) this is a binomial convolution triangle, a Sheffer triangle of the Appell type: ((exp(-x))/(1-x)^2),x). See the e.g.f. given below.

Examples

			Triangle starts:
     1;
     1,    1;
     3,    2,   1;
    11,    9,   3,   1;
    53,   44,  18,   4,  1;
   309,  265, 110,  30,  5, 1;
  2119, 1854, 795, 220, 45, 6, 1;
  ...
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the unit descents are shown by a /).
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the small descents are shown by a /).
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 for S_{n,k} (without row n=1 and column k=0).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263 (Table 7.5.1).

Crossrefs

Cf. A010027 (mirror image), A120434, A001100.

Programs

  • Maple
    G:=exp(-x+t*x)/(1-x)^2: Gser:=simplify(series(G,x=0,15)): for n from 0 to 10 do P[n+1]:=sort(n!*coeff(Gser,x,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=0..n-1) od; # yields sequence in triangular form
  • Mathematica
    Needs["Combinatorica`"];
    Table[Map[Count[#,1]&,Map[Differences,Permutations[n]]]//Distribution,{n,1,10}]//Grid
    (* Geoffrey Critzer, Dec 15 2012 *)
    T[n_, k_] := (n-1)! SeriesCoefficient[Exp[-x + t x]/(1-x)^2, {x, 0, n-1}, {t, 0, k}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)
    T[1,1]:=1;T[0,1]:=0;T[n_,1]:=T[n,1]=(n-1)T[n-1,1]+(n-2)T[n-2,1];T[n_,k_]:=T[n,k]=T[n-1, k-1](n-1)/(k-1);Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)

Formula

T(n,1) = A000255(n-1).
T(n,2) = A000166(n-1) (the derangement numbers).
T(n,3) = A000274(n).
T(n,4) = A000313(n).
T(n,5) = A001260(n);
G.f.: exp(-x+tx)/(1-x)^2 (if offset is 0), i.e., T(n,k)=(n-1)!*[x^(n-1) t^k]exp(-x+tx)/(1-x)^2.
T(n,k) = binomial(n-1,k)*A000255(n-1), n-1 >= k >= 0, else 0.

A144696 Triangle of 2-Eulerian numbers.

Original entry on oeis.org

1, 1, 2, 1, 7, 4, 1, 18, 33, 8, 1, 41, 171, 131, 16, 1, 88, 718, 1208, 473, 32, 1, 183, 2682, 8422, 7197, 1611, 64, 1, 374, 9327, 49780, 78095, 38454, 5281, 128, 1, 757, 30973, 264409, 689155, 621199, 190783, 16867, 256
Offset: 2

Views

Author

Peter Bala, Sep 19 2008

Keywords

Comments

Let [n] denote the ordered set {1,2,...,n}. The symmetric group S_n consists of the injective mappings p:[n] -> [n]. Such a permutation p has an excedance at position i, 1 <= i < n, if p(i) > i. One well-known interpretation of the Eulerian numbers A(n,k) is that they count the permutations in the symmetric group S_n with k excedances. The triangle of Eulerian numbers is A008292 (but with an offset of 1 in the column numbering). We generalize this definition to restricted permutations as follows.
Let r be a nonnegative integer and let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number, denoted by A(r;n,k), is defined as the number of permutations in Permute(n,n-r) having k excedances. Thus the current array of 2-Eulerian numbers gives the number of permutations in Permute(n,n-2) with k excedances. See the example section below for some numerical examples.
Clearly A(0;n,k) = A(n,k). The case r = 1 also produces the ordinary Eulerian numbers A(n,k). There is an obvious bijection from Permute(n,n) to Permute(n,n-1) that preserves the number of excedances of a permutation. Consequently, the 1-Eulerian numbers are equal to the 0-Eulerian numbers: A(1;n,k) = A(0;n,k) = A(n,k).
For other cases of r-Eulerian numbers see A144697 (r = 3), A144698 (r = 4) and A144699 (r = 5). There is also a concept of r-Stirling numbers of the first and second kinds - see A143491 and A143494. If we multiply the entries of the current array by a factor of 2 and then reverse the rows we obtain A120434.
An alternative interpretation of the current array due to [Strosser] involves the 2-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapitre 4, Section 3]). We define a permutation p in Permute(n,n-2) to have a 2-excedance at position i (1 <=i <= n-2) if p(i) >= i + 2.
Given a permutation p in Permute(n,n-2), define ~p to be the permutation in Permute(n,n-2) that takes i to n+1 - p(n-i-1). The map ~ is a bijection of Permute(n,n-2) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 2-excedance at position n-i-1. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 2-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries count the permutations in Permute(n,n-2) with k 2-excedances.
Example: Represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). In Permute(10,8) the permutation p = (1,2,4,7,10,6,5,8) does not have an excedance in the first two positions (i = 1 and 2) or in the final three positions (i = 6, 7 and 8). The permutation ~p = (3,6,5,1,4,7,9,10) has 2-excedances only in the first three positions and the final two positions.
From Peter Bala, Dec 27 2019: (Start)
This is the array A(1,1,3) in the notation of Hwang et al. (p. 25), where the authors remark that the r-Eulerian numbers were first studied by Shanlan Li (Duoji Bilei, Ch. 4), who gave the summation formulas
Sum_{i = 2..n+1} (i-1)*C(i,2) = C(n+3,4) + 2*C(n+2,4)
Sum_{i = 2..n+1} (i-1)^2*C(i,2) = C(n+4,5) + 7*C(n+3,5) + 4*C(n+2,5)
Sum_{i = 2..n+1} (i-1)^3*C(i,2) = C(n+5,6) + 18*C(n+4,6) + 33*C(n+3,6) + 8*C(n+2,6). (End)

Examples

			The triangle begins
===========================================
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
2..|..1
3..|..1.....2
4..|..1.....7.....4
5..|..1....18....33.....8
6..|..1....41...171...131....16
7..|..1....88...718..1208...473....32
8..|..1...183..2682..8422..7197..1611....64
...
Row 4 = [1,7,4]: We represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). Here n = 4. The permutation (1,2) has no excedances; 7 permutations have a single excedance, namely, (1,3), (1,4), (2,1), (3,1), (3,2), (4,1) and (4,2); the remaining 4 permutations, (2,3), (2,4), (3,4) and (4,3) each have two excedances.
		

References

  • J. Riordan. An introduction to combinatorial analysis. New York, J. Wiley, 1958.
  • R. Strosser. Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.
  • Li, Shanlan (1867). Duoji bilei (Series summation by analogies), 4 scrolls. In Zeguxizhai suanxue (Mathematics from the Studio Devoted to the Imitation of the Ancient Chinese Tradition) (Jinling ed.), Volume 4.
  • Li, Shanlan (2019). Catégories analogues d’accumulations discrètes (Duoji bilei), traduit et commenté par Andrea Bréard. La Bibliothèque Chinoise. Paris: Les Belles Lettres.

Crossrefs

Cf. A000079 (right diagonal), A001710 (row sums).
Cf. A000182 (related to alt. row sums).

Programs

  • Magma
    m:=2; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 04 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/2!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2), j = 0..k):
    for n from 2 to 10 do
    seq(T(n,k),k = 0..n-2)
    end do;
  • Mathematica
    T[n_, k_]:= 1/2!*Sum[(-1)^(k-j)*Binomial[n+1, k-j]*(j+1)^(n-1)*(j+2), {j, 0, k}];
    Table[T[n, k], {n,2,10}, {k,0,n-2}]//Flatten (* Jean-François Alcover, Oct 15 2019 *)
  • SageMath
    m=2 # A144696
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 04 2022

Formula

T(n,k) = (1/2!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2);
T(n,n-k) = (1/2!)*Sum_{j = 2..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-1)*(j-1).
Recurrence relations:
T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 2, T(2,k) = 0 for k >= 1. Special cases: T(n,n-2) = 2^(n-2); T(n,n-3) = A066810(n-1).
E.g.f. (with suitable offsets): (1/2)*[(1 - x)/(1 - x*exp(t - t*x))]^2 = 1/2 + x*t + (x + 2*x^2)*t^2/2! + (x + 7*x^2 + 4*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_2(x) = 1. It follows that the polynomials R_n(x) for n >= 3 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+1)-th row generating polynomial = (1/2!)*Sum_{k = 1..n} (k+1)!*Stirling2(n,k) *x^(k-1)*(1-x)^(n-k).
For n >= 2,
(1/2)*(x*d/dx)^(n-1) (1/(1-x)^2) = x/(1-x)^(n+1) * Sum_{k = 0..n-2} T(n,k)*x^k,
(1/2)*(x*d/dx)^(n-1) (x^2/(1-x)^2) = 1/(1-x)^(n+1) * Sum_{k = 2..n} T(n,n-k)*x^k,
1/(1-x)^(n+1)*Sum_{k = 0..n-2} T(n,k)*x^k = (1/2!) * Sum_{m = 0..inf} (m+1)^(n-1)*(m+2)*x^m,
1/(1-x)^(n+1)*Sum_{k = 2..n} T(n,n-k)*x^k = (1/2!) * Sum_{m = 2..inf} m^(n-1)*(m-1)*x^m.
Worpitzky-type identities:
Sum_{k = 0..n-2} T(n,k)*binomial(x+k,n) = (1/2!)*x^(n-1)*(x - 1);
Sum_{k = 2..n} T(n,n-k)*binomial(x+k,n) = (1/2!)*(x + 1)^(n-1)*(x + 2).
Relation with Stirling numbers (Frobenius-type identities):
T(n+1,k-1) = (1/2!) * Sum_{j = 0..k} (-1)^(k-j)*(j+1)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+1,k-1) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+1)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 1 and
T(n+2,k) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+2)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 0, where S(2;n,k) denotes the 2-Stirling numbers A143494(n,k).
The row polynomials of this array are related to the Eulerian polynomials. For example, 1/2*x*d/dx [x*(x + 4*x^2 + x^3)/(1-x)^4] = x^2*(1 + 7*x + 4*x^2)/(1-x)^5 and 1/2*x*d/dx [x*(x + 11*x^2 + 11*x^3 + x^4)/(1-x)^5] = x^2*(1 + 18*x + 33*x^2 + 8*x^3)/(1-x)^6.
Row sums A001710. Alternating row sums [1, -1, -2, 8, 16, -136, -272, 3968, 7936, ... ] are alternately (signed) tangent numbers and half tangent numbers - see A000182.
Sum_{k = 0..n-2} 2^k*T(n,k) = A069321(n-1). Sum_{k = 0..n-2} 2^(n-k)*T(n,k) = 4*A083410(n-1).
For n >=2, the shifted row polynomial t*R(n,t) = (1/2)*D^(n-1)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-2). - Peter Bala, Apr 22 2012

A136717 Triangle T(n,k), 1 <= k <= n, read by rows: T(n,k) is the number of permutations in the symmetric group S_n having k multiplicative 3-excedances. Equivalently, the number of permutations of the set {3,6,9,...,3n} with k excedances.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 12, 12, 0, 0, 0, 72, 48, 0, 0, 0, 72, 456, 192, 0, 0, 0, 0, 960, 3120, 960, 0, 0, 0, 0, 0, 10800, 23760, 5760, 0, 0, 0, 0, 0, 10800, 133920, 183600, 34560, 0, 0, 0, 0, 0, 0, 241920, 1572480, 1572480, 241920
Offset: 1

Views

Author

Peter Bala, Jan 23 2008

Keywords

Comments

A permutation (p(1),p(2),...,p(n)) in the symmetric group S_n has a multiplicative 3-excedance at position i, 1 <= i <= n, if 3*p(i) > i. The (n,k)-th entry in this array gives the number of permutations in S_n with k multiplicative 3-excedances.
Compare with A008292, the triangle of Eulerian numbers, which enumerates permutations by the usual excedance number and with A136715, which enumerates permutations by multiplicative 2-excedances.
Let e(p)= |{i | 1 <= i < = n, 3*p(i) > i}| denote the number of multiplicative 3-excedances in the permutation p. This 3-excedance statistic e(p) on the symmetric group S_n is related to a descent statistic as follows. Define a permutation p in S_n to have a multiplicative 3-descent at position i, 1 <= i <= n-1, if p(i) is divisible by 3 and p(i) > p(i+1). For example, the permutation (4,1,6,5,3,2) in S_6 has two multiplicative 3-descents (at position 3 and position 5). Array A136718 records the number of permutations of S_n with k multiplicative 3-descents.
Let d(p) = |{i | 1 <= i <= n-1, p(i) is divisible by 3 & p(i) > p(i+1)}| count the multiplicative 3-descents in the permutation p. Comparison of the recursion relations for the entries of this table with the recursion relations for the entries of A136718 shows that e(p) and d(p) are related by sum {p in S_n} x^e(p) = x^ceiling(2*n/3)* sum {p in S_n} x^d(p). Thus the shifted multiplicative 3-excedance statistic e(p) - ceiling(2*n/3) and the multiplicative 3-descent statistic d(p) are equidistributed on the symmetric group S_n.
(Note: There is also an additive r-excedance statistic on the symmetric group, due to Riordan, where the condition r*p(i) > i is replaced by p(i) >= i+r. See A120434 for the r = 2 case.)
An alternative interpretation of this array is as follows: Let T_n denote the set {3,6,9,...,3n} and let now p denote a bijection p:T_n -> T_n. We say the permutation p has an excedance at position i, 1 <= i <= n, if p(3i) > i. For example, if we represent p in one line notation by the vector (p(3),p(6),...,p(3n)), then the permutation (9,18,3,12,15,6) of T_6 has four excedances in total (at positions 1, 2, 4 and 5). This array gives the number of permutations of the set T_n with k excedances. This is the viewpoint taken in [Jansson].
A137593 = A000012 * this triangular matrix. A137594 = A007318 * this triangular matrix. - Gary W. Adamson, Jan 28 2008

Examples

			T(3,3) = 4; the four permutations in S_3 with three multiplicative 3-excedances are (1,2,3), (1,3,2), (2,1,3) and (3,1,2). The remaining two permutations (2,3,1) and (3,2,1) each have two multiplicative 3-excedances.
Equivalently, the four permutations of the set {3,6,9} with 3 excedances are (3,6,9), (3,9,6), (6,3,9) and (9,3,6). The remaining two permutations (6,9,3) and (9,6,3) each have 2 excedances.
Triangle starts
n\k|..1....2....3....4....5....6
---+----------------------------
1..|..1
2..|..0....2
3..|..0....2....4
4..|..0....0...12...12
5..|..0....0....0...72...48
6..|..0....0....0...72..456..192
		

Crossrefs

Cf. A000142 (row sums), A008292, A136718, A136715.

Formula

Recurrence relations (apply proposition 2.2 of [Jansson]):
T(3n,k) = (k+1-2n)*T(3n-1,k) + (5n-k)*T(3n-1,k-1) for n >= 1;
T(3n+1,k) = (k-2n)*T(3n,k) + (5n+2-k)*T(3n,k-1) for n >= 0;
T(3n+2,k) = (k-1-2n)*T(3n+1,k) + (5n+4-k)*T(3n+1,k-1) for n >= 0.
Boundary conditions: T(0,k) = 0 all k; T(n,0) = 0 all n; T(1,1) = 1.
Define the shifted row polynomials R(n,x) by
R(n,x) := x^(1+floor(n/3)-n)* sum {k = n-floor(n/3)..n} T(n,k)*x^k.
The first few values are R(1,x) = x, R(2,x) = 2x, R(3,x) = 2x+4x^2 and R(4,x) = 12x+12x^2.
The recurrence relations yield the identities:
x*d/dx(1/x*R(3n,x)/(1-x)^(3n+1)) = R(3n+1,x)/(1-x)^(3n+2);
x*d/dx(1/x*R(3n+1,x)/(1-x)^(3n+2)) = R(3n+2,x)/(1-x)^(3n+3);
x*d/dx(R(3n+2,x)/(1-x)^(3n+3)) = R(3n+3,x)/(1-x)^(3n+4).
An easy induction argument now gives the Taylor series expansions:
R(3n,x)/(1-x)^(3n+1) = sum {m = 1..inf} m^2*(m+1)*(m+2)^2*(m+3)*...* (m+2n-2)^2*(m+2n-1)*x^m;
R(3n+1,x)/(1-x)^(3n+2) = sum {m = 1..inf} m*((m+1)^2*(m+2)*(m+3)^2*(m+4) *...*(m+2n-1)^2*(m+2n))*x^m.
R(3n+2,x)/(1-x)^(3n+3) = sum {m = 1..inf} m*((m+1)*(m+2)^2*(m+3)*(m+4)^2 *...*(m+2n-1)*(m+2n)^2)*(m+2n+1)*x^m.
For example, for row 6 (n = 2) we have the expansion (72x+456x^2+192x^3)/(1-x)^7 = 72x + 960x^2 + 5400x^3 + ... = (1^2*2*3^2*4)*x + (2^2*3*4^2*5)*x^2 + (3^2*4*5^2*6)*x^3 + ... .

A136715 Triangle T(n,k), 1 <= k <= n, read by rows: T(n,k) is the number of permutations of the set {2,4,6,...,2n} with k excedances. Equivalently, T(n,k) is the number of permutations in the symmetric group S_n having k multiplicative 2-excedances.

Original entry on oeis.org

1, 1, 1, 0, 4, 2, 0, 4, 16, 4, 0, 0, 36, 72, 12, 0, 0, 36, 324, 324, 36, 0, 0, 0, 576, 2592, 1728, 144, 0, 0, 0, 576, 9216, 20736, 9216, 576, 0, 0, 0, 0, 14400, 115200, 172800, 57600, 2880, 0, 0, 0, 0, 14400, 360000, 1440000, 1440000, 360000, 14400
Offset: 1

Views

Author

Peter Bala, Jan 18 2008

Keywords

Comments

Let E_n denote the set {2,4,6,...,2n} and let p denote a bijection p:E_n -> E_n. We say the permutation p has an excedance at position i, 1 <= i <= n, if p(2i) > i. For example, if we represent p in one line notation by the vector (p(2),p(4),...,p(2n)), then the permutation (6,2,8,4,10) of E_5 has three excedances in total (at positions 1, 3 and 5). This array gives the number of permutations of the set E_n with k excedances. This is the viewpoint taken in [Jansson]. See A136716 for the corresponding array when the set E_n is replaced by the set O_n := {1,3,5,...,2n-1}.
Alternatively, we can work with permutations (p(1),p(2),...,p(n)) in the symmetric group S_n and define p to have a multiplicative 2-excedance at position i, 1 <= i <= n, if 2*p(i) > i. Then the (n,k)-th entry of this array gives the number of permutations in S_n with k multiplicative 2-excedances. Compare with A008292, the triangle of Eulerian numbers, which enumerates permutations by the usual excedance number and A136717 which enumerates permutations by multiplicative 3-excedances.
Let e(p)= |{i | 1 <= i < = n, 2*p(i) > i}| denote the number of multiplicative 2-excedances in the permutation p of S_n. This 2-excedance statistic e(p) on the symmetric group S_n is related to a descent statistic as follows.
Define a permutation p in S_n to have a descent from even at position i, 1 <= i <= n-1, if p(i) is even and p(i) > p(i+1). For example, the permutation (2,1,3,5,6,4) in S_6 has two descents from even (at position 1 and position 5). Array A134434 records the number of permutations of S_n with k descents from even.
Let d(p) = |{i | 1 <= i <= n-1, p(i) is even & p(i) > p(i+1)}| count the descents from even in the permutation p. Comparison of the formulas for the entries of this table with the formulas for the entries of A134434 shows that e(p) and d(p) are related by sum {p in S_n} x^e(p) = x^ceiling(n/2)* sum {p in S_n} x^d(p). Thus the shifted multiplicative 2-excedance statistic e(p) - ceiling(n/2) and the descent statistic d(p) are equidistributed on the symmetric group S_n.

Examples

			T(4,2) = 4; the four permutations in S_4 with two multiplicative 2-excedances are (3,4,1,2), (4,3,1,2), (3,1,4,2) and (4,1,3,2). Alternatively, the four permutations (6,8,2,4), (8,6,2,4), (6,2,8,4) and (8,2,6,4) of the set E_4 each have 2 excedances.
Triangle starts
n\k|..1....2....3....4....5....6
--------------------------------
1..|..1
2..|..1....1
3..|..0....4....2
4..|..0....4...16....4
5..|..0....0...36...72...12
6..|..0....0...36..324..324...36
		

Crossrefs

Formula

Recurrence relations:
T(2n,k) = (k+1-n)*T(2n-1,k) + (3n-k)*T(2n-1,k-1) for n >= 1;
T(2n+1,k) = (k-n)*T(2n,k) + (3n+2-k)*T(2n,k-1) for n >= 0. Boundary conditions: T(0,k) = 0 all k; T(n,0) = 0 all n; T(1,1) = 1.
The recurrence relations have the explicit solution T(2n,n+k) = [n!* C(n,k)]^2 and T(2n+1,n+k+1) = 1/(k+1)*[(n+1)!*C(n,k)]^2 = n!*(n+1)!*C(n,k)*C(n+1,k+1); or as a single formula, T(n,k) = floor(n/2)! * floor((n+1)/2)! * C(floor(n/2),k-floor((n+1)/2)) * C(floor((n+1)/2),k-floor(n/2)). Also T(2n,n+k) = n!^2 * A008459 (n,k); T(2n+1,n+k+1) = n!*(n+1)!* A103371 (n,k).
For the even numbered rows, define the shifted row polynomials F(2n,x) := x^(1-n)* sum {k = n..2n} T(2n,k)*x^k = n!^2 * x * (1 + C(n,1)^2*x + C(n,2)^2*x^2 + ... + C(n,n)^2*x^n). For the odd numbered rows, define the shifted row polynomials F(2n+1,x) := x^(-n)* sum {k = n+1..2n+1} T(2n+1,k)*x^k = n!*(n+1)!* ((n+1)*N(n+1,1)*x + n*N(n+1,2)*x^2 +(n-1)* N(n+1,3)*x^3 + ... + N(n+1,n+1)*x^(n+1)), where N(n,k) denotes the Narayana numbers. The first few values are F(1,x) = x, F(2,x) =x+x^2, F(3,x) = 4x+2x^2 and F(4,x) = 4x+16x^2+4x^2.
The recurrence relations yield the identities x*d/dx(F(2n-1,x)/(1-x)^(2n)) = F(2n,x)/(1-x)^(2n+1) and x*d/dx(1/x*F(2n,x)/(1-x)^(2n+1)) = F(2n+1,x)/(1-x)^(2n+2), for n = 1,2,3,... . An easy induction argument now gives the Taylor series expansions: F(2n,x)/(1-x)^(2n+1) = sum {m = 1..inf} (m*(m+1)*...*(m+n-1))^2*x^m; F(2n+1,x)/(1-x)^(2n+2) = sum {m = 1..inf} m*((m+1)*(m+2)*...*(m+n))^2*x^m.
For example, when n = 3 we have for row 6 the expansion (36x + 324x^2 + 324x^3 + 36x^4)/(1-x)^7 = 36x + 576x^2 + 3600x^3 + ... = (1.2.3)^2*x + (2.3.4)^2*x^2 + (3.4.5)^2*x^3 + ... and for row 7 the expansion (576x + 2592x^2 + 1728x^3 + 144x^4)/(1-x)^8 = 576x + 7200x^2 + 43200x^3 + ... = 1*(2.3.4)^2*x + 2*(3.4.5)^2*x^2 + 3*(4.5.6)^2*x^3 + ... .
Relation with the Jacobi polynomials P_n(a,b,x): F(2n,x) = n!^2*x*(1-x)^n *P_n(0,0,(1+x)/(1-x)), F(2n+1,x) = n!*(n+1)!*x*(1-x)^n *P_n(1,0,(1+x)/(1-x)).
Worpitzky-type identities:
Sum {k = n..2n} T(2n,k)*C(x+k,2n) = ((x+1)*(x+2)*...*(x+n))^2;
sum {k = n+1..2n+1} T(2n+1,k)*C(x+k,2n+1) = ((x+1)*(x+2)*...*(x+n))^2*(x+n+1);
and for the odd numbered rows read in reverse order, sum {k = n+1..2n+1} T(2n+1,3n+2-k)*C(x+k,2n+1) = (x+1)*((x+2)*(x+3)*...*(x+n+1))^2.

A199335 Triangle T(n,k), read by rows, given by (0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...) DELTA (2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...), where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 2, 14, 8, 0, 2, 36, 66, 16, 0, 2, 82, 342, 262, 32, 0, 2, 176, 1436, 2416, 946, 64, 0, 2, 366, 5364, 16844, 14394, 3222, 128, 0, 2, 748, 18654, 99560, 156190, 76908, 10562, 256
Offset: 0

Views

Author

Philippe Deléham, Nov 05 2011

Keywords

Comments

Following an observation by Dale Gerdemann, it appears that T(n,k) = A120434(n+1,n-k) for n>=1, k>=1. - M. F. Hasler, Apr 18 2015
See also A144696. - Antti Karttunen, Apr 21 2015

Examples

			Triangle begins :
1
0, 2
0, 2, 4
0, 2, 14, 8
0, 2, 36, 66, 16
0, 2, 82, 342, 262, 32
0, 2, 176, 1436, 2416, 946, 64
		

Crossrefs

Formula

Sum_k{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A000142(n+1), A162509(n+1) for x=0,1,2 respectively.
Sum_{k, 0<=k<=n} T(n,k)^2^(n-k) = A005649(n).

Extensions

Typo in 8th row corrected by Olivier Gérard, Oct 29 2012
Showing 1-7 of 7 results.