A120452 Number of partitions of n-1 boys and one girl with no couple.
1, 1, 3, 5, 9, 14, 23, 34, 52, 75, 109, 153, 216, 296, 407, 549, 739, 981, 1300, 1702, 2224, 2879, 3716, 4761, 6083, 7721, 9774, 12306, 15450, 19307, 24064, 29867, 36978, 45614, 56130, 68846, 84250, 102793, 125148, 151955, 184123, 222553, 268482
Offset: 1
Examples
n=5: If partitions have no pair "o*", then a(5)=9 ("o" means a boy, "*" means a girl): {o, o, o, o, *}, {o, o, *, oo}, {*, oo, oo}, {o, *, ooo}, {o, o, oo*}, {oo, oo*}, {*, oooo}, {o, ooo*}, {oooo*}. From _Gus Wiseman_, Jun 08 2021: (Start) The a(1) = 1 through a(6) = 14 partitions of 2n with reverse-alternating sum 2: (2) (211) (222) (332) (442) (552) (321) (431) (541) (651) (21111) (22211) (22222) (33222) (32111) (32221) (33321) (2111111) (33211) (43221) (43111) (44211) (2221111) (54111) (3211111) (2222211) (211111111) (3222111) (3321111) (4311111) (222111111) (321111111) (21111111111) For example, the partition (43221) has reverse-alternating sum 1 - 2 + 2 - 3 + 4 = 2, so is counted under a(6). The a(1) = 1 through a(6) = 14 partitions of 2n with exactly two odd parts, one of which is the greatest: (11) (31) (33) (53) (55) (75) (51) (71) (73) (93) (321) (332) (91) (111) (521) (532) (543) (3221) (541) (552) (721) (732) (3322) (741) (5221) (921) (32221) (5322) (5421) (7221) (33222) (52221) (322221) (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Crossrefs
A diagonal of A103919.
A diagonal of A344612.
A000097 counts partitions of 2n with alternating sum 2.
A344610 counts partitions of 2n by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.
Programs
-
Mathematica
a[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1]; Array[a, 50] (* Jean-François Alcover, Jun 05 2021 *)
Formula
a(n) = A000070(n-2) + A002865(n-1). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 - 37*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016
Extensions
More terms from Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
More terms from Max Alekseyev, Aug 23 2006
Comments