cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120486 Partial sums of A000188.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 24, 25, 28, 29, 31, 32, 33, 34, 36, 41, 42, 45, 47, 48, 49, 50, 54, 55, 56, 57, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 82, 89, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 109, 110, 111, 114, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Gerry Myerson, Nov 21 2007

Keywords

Comments

This sequence can also be described as the number of 3-term nondecreasing geometric progressions with no term exceeding n.
a(n) = A132188(n) - A132345(n). - Reinhard Zumkeller, Apr 21 2012

Crossrefs

Programs

  • Haskell
    a120486 n = a120486_list !! (n - 1)
    a120486_list = scanl1 (+) a000188_list
    -- Reinhard Zumkeller, Apr 22 2012
  • Maple
    with(numtheory): seq(add(phi(k)*floor(n/k^2), k=1..floor(sqrt(n))), n=1..100); # Ridouane Oudra, Aug 18 2019

Formula

a(n) = 3n log(n) / Pi^2 + O(n). - Griffin N. Macris, Jan 28 2017
a(n) ~ 3*n*((log(n) + (3*gamma - 1))/ Pi^2 - 12*(Zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..floor(sqrt(n))} phi(k)*floor(n/k^2), where phi is the Euler totient function A000010. - Ridouane Oudra, Aug 18 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 26 2021
From Ridouane Oudra, Oct 05 2024: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..i} A010052(i*j).
a(n) = A132345(n) + n.
a(n) = (1/2)*A132189(n) + n.
a(n) = (1/2)*(A132188(n) + n). (End)