A120486 Partial sums of A000188.
1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 24, 25, 28, 29, 31, 32, 33, 34, 36, 41, 42, 45, 47, 48, 49, 50, 54, 55, 56, 57, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 82, 89, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 109, 110, 111, 114, 122, 123, 124, 125, 127, 128
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio
- Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette, 35 (3) 2008, p 189-194.
Programs
-
Haskell
a120486 n = a120486_list !! (n - 1) a120486_list = scanl1 (+) a000188_list -- Reinhard Zumkeller, Apr 22 2012
-
Maple
with(numtheory): seq(add(phi(k)*floor(n/k^2), k=1..floor(sqrt(n))), n=1..100); # Ridouane Oudra, Aug 18 2019
Formula
a(n) = 3n log(n) / Pi^2 + O(n). - Griffin N. Macris, Jan 28 2017
a(n) ~ 3*n*((log(n) + (3*gamma - 1))/ Pi^2 - 12*(Zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..floor(sqrt(n))} phi(k)*floor(n/k^2), where phi is the Euler totient function A000010. - Ridouane Oudra, Aug 18 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 26 2021
From Ridouane Oudra, Oct 05 2024: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..i} A010052(i*j).
a(n) = A132345(n) + n.
a(n) = (1/2)*A132189(n) + n.
a(n) = (1/2)*(A132188(n) + n). (End)
Comments