A120500 Times in hours,minutes and seconds (to the nearest second) at which the smoothly crossing minute and hour hands of an analog clock coincide, over a period of one complete 12-hour sweep of the hour hand.
0, 10527, 21055, 31622, 42149, 52716, 63244, 73811, 84338, 94905, 105433, 120000
Offset: 0
Examples
52716, for instance, in the sequence is meant to be read 5:27:16 or 5hr27mn16s. We have a(3)=round(43200*3/11) to base 60(double-spaced), i.e., 11782=3*60^2 +16*60 + 22*1 to base 60, which is 31622.
References
- M. Gardner, Science Fiction Puzzle Tales, Problem 28 pp. 90;141 Clarkson N. Potter NY 1981.
- M. Gardner, Mathematical Puzzles of Sam Loyd, Problem 43 pp. 40;137 Dover NY 1959.
- A. Jouette, Le Secret Des Nombres, Problem 52 pp. 176;269 Albin Michel Paris 1996.
Links
- T. Eveilleau, Les aiguilles de l'horloge (in French).
Programs
-
Mathematica
fix[{a_,b_,c_}]:=FromDigits[Flatten[{a,PadLeft[IntegerDigits[b], 2], PadLeft[ IntegerDigits[c],2]}]]; Join[{0},fix/@Table[ IntegerDigits[ Round[(43200n)/11],60],{n,11}]] (* Harvey P. Dale, Oct 05 2017 *)
Formula
a(n)=round(43200*n/11) expressed in double-spaced sexagesimal scale. In other words, the hour and minute hands line up at 11 successive positions after every (12/11)hr, i.e., 1hr5min27s and 3/11s from noon or midnight.
Comments