cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A120514 a(n) = min{j : A120503(j) = n}.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22, 23, 24, 27, 28, 29, 31, 32, 33, 35, 36, 37, 41, 42, 43, 45, 46, 47, 49, 50, 51, 54, 55, 56, 58, 59, 60, 62, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 81, 82, 83, 85, 86, 87, 89, 90, 91, 94, 95, 96, 98
Offset: 1

Views

Author

Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006

Keywords

Crossrefs

Programs

  • Maple
    p := proc(n)
    if n=1 then return 1; end if;
    for j from p(n-1)+1 to infinity do
    if A120503(j) = n then return j; fi; od;
    end proc;

Formula

G.f.: P(z) = z / (1-z) * (1 + Sum_{m>=0} z^(m^3)/(1 - z^(m^3))).
a(1) = 1; a(n) = n-1 + a(floor((n-1)/3)+1). - Gleb Ivanov, Jan 10 2022

A120525 First differences of successive generalized meta-Fibonacci numbers A120503.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006

Keywords

Crossrefs

Programs

Formula

d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
g.f.: z (1 + z^1 ( (1 - z^(2 * [1])) / (1 - z^[1]) + z^3 * (1 - z^(3 * [i]))/(1 - z^[1]) ( (1 - z^(2 * [2])) / (1 - z^[2]) + z^9 * (1 - z^(3 * [2]))/(1 - z^[2]) (..., where [i] = (3^i - 1) / 2.
g.f.: D(z) = z * prod((1 - z^(3 * [i])) / (1 - z^[i])), i=1..infinity), where [i] = (3^i - 1) / 2.

A240830 a(n)=1 for n <= s+k; thereafter a(n) = Sum(a(n-i-s-a(n-i-1)),i=0..k-1) where s=0, k=7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 13, 13, 13, 13, 13, 13, 19, 13, 19, 19, 19, 19, 25, 19, 25, 19, 25, 25, 31, 25, 31, 25, 31, 25, 31, 31, 37, 31, 37, 31, 37, 37, 37, 37, 43, 37, 43, 43, 43, 43, 43, 43, 49, 49, 49, 49, 49, 49, 49, 55, 55, 55, 55, 55, 55, 61, 55, 61, 61, 61, 61, 67, 61, 67, 61, 67, 67, 73
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2014

Keywords

Crossrefs

Same recurrence as A240828, A120503 and A046702.
See also A240831, A240832.
Callaghan et al. (2005)'s sequences T_{0,k}(n) for k=1 through 7 are A000012, A046699, A046702, A240835, A241154, A241155, A240830.

Programs

  • Maple
    #T_s,k(n) from Callaghan et al. Eq. (1.7).
    s:=0; k:=7;
    a:=proc(n) option remember; global s,k;
    if n <= s+k then 1
    else
        add(a(n-i-s-a(n-i-1)),i=0..k-1);
    fi; end;
    t1:=[seq(a(n),n=1..100)];
  • Mathematica
    A240830[n_]:=A240830[n]=If[n<=7,1,Sum[A240830[n-i-A240830[n-i-1]],{i,0,6}]];
    Array[A240830,100] (* Paolo Xausa, Dec 06 2023 *)

A007844 Least positive integer k for which 3^n divides k!.

Original entry on oeis.org

1, 3, 6, 9, 9, 12, 15, 18, 18, 21, 24, 27, 27, 27, 30, 33, 36, 36, 39, 42, 45, 45, 48, 51, 54, 54, 54, 57, 60, 63, 63, 66, 69, 72, 72, 75, 78, 81, 81, 81, 81, 84, 87, 90, 90, 93, 96, 99, 99, 102, 105, 108, 108, 108, 111, 114, 117, 117, 120, 123, 126, 126, 129, 132, 135, 135, 135
Offset: 0

Views

Author

Bruce Dearden and Jerry Metzger, R. Muller

Keywords

Comments

It appears than for n>0, a(n) is divisible by 3, and that the resulting sequence a(n)/3 is A120503 (checked up to n=1000). - Michel Marcus, Aug 19 2013. [This is true: see A007843 for the idea of the proof. - M. F. Hasler, Dec 27 2019]
Also least positive integer k for which 6^n divides k!. - Michel Marcus, Aug 20 2013

References

  • H. Ibstedt, Smarandache Primitive Numbers, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 216-229.

Crossrefs

Cf. A007843 (analog for 2), A007845 (analog for 5).
Cf. A120503 (Meta-Fibonacci, k = 3).

Programs

  • Mathematica
    Array[Block[{k = 1}, While[Mod[k!, 3^#] != 0, k++]; k] &, 67, 0] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    a(n) = {k = 1; while (valuation(k!, 3) < n, k++); k;} \\ Michel Marcus, Aug 19 2013
    
  • PARI
    apply( A007844(n)={my(s=sumdigits(n*=2,3)\2); n-=n%3; while(s>0, s-=valuation(n+=3,3)); n+!n}, [0..99]) \\ M. F. Hasler, Dec 27 2019

Formula

a(n) = 3*A120503(n) for n > 0, cf. A007843. - M. F. Hasler, Dec 27 2019

A228297 Generalized meta-Fibonacci sequence a(n) with parameters s=0 and k=5.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 25, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 50, 50, 51, 52, 53
Offset: 1

Views

Author

Michel Marcus, Aug 20 2013

Keywords

Comments

Each integer n appears x+1 times where x is the greatest power of 5 in the factorization of n!. - Gerald Hillier, Feb 08 2020

Crossrefs

Programs

  • Mathematica
    Array[ConstantArray[#, IntegerExponent[#, 5] + 1] &, 53] // Flatten (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    a(n)= {local(A); if(n<=5, max(0, n), A=vector(n, i, i); for(k=6, n, A[k]= A[k-A[k-1]] + A[k-1-A[k-2]] + A[k-2-A[k-3]] + A[k-3-A[k-4]] + A[k-4-A[k-5]];); A[n];);}
    (HP 49G calculator)
    « DUPDUP 5 IQUOT -
      WHILE DUP 0 OVER
        DO 5 IQUOT DUP
    ROT + SWAP DUP NOT
        UNTIL
        END DROP +
    PICK3 <
      REPEAT 1 +
      END NIP
    » Gerald Hillier, Sep 19 2017

Formula

a(n) = A007845(n)/5. - M. F. Hasler, Dec 27 2019

A228298 Generalized meta-Fibonacci sequence a(n) with parameters s=0 and k=7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 49, 49, 50, 51, 52, 53, 54, 55, 56, 56
Offset: 1

Views

Author

Michel Marcus, Aug 20 2013

Keywords

Comments

It appears than a(n) = A020646(n)/7 for n>0 (verified up to n=700).

Crossrefs

Programs

  • PARI
    a(n)= {local(A); if(n<=7, max(0, n), A=vector(n, i, i); for(k=8, n, A[k]= A[k-A[k-1]] + A[k-1-A[k-2]] + A[k-2-A[k-3]] + A[k-3-A[k-4]] + A[k-4-A[k-5]] + A[k-5-A[k-6]] + A[k-6-A[k-7]];); A[n];);}

A240829 a(1)=-1, a(2)=0, a(3)=1; thereafter a(n) = Sum(a(n-i-s-a(n-i-1)),i=0..k-1) where s=0, k=3.

Original entry on oeis.org

-1, 0, 1, 3, 2, 4, 4, 7, 4, 7, 7, 9, 8, 9, 11, 10, 10, 13, 15, 13, 13, 13, 18, 15, 18, 18, 18, 18, 18, 23, 23, 20, 19, 23, 28, 27, 23, 25, 27, 28, 25, 26, 28, 30, 31, 32, 33, 33, 32, 34, 33, 38, 36, 39, 34, 36, 36, 39, 39, 39, 39, 44, 46, 46, 43, 46, 46, 44, 44, 49, 49, 49, 46, 51, 48, 51, 51, 54, 54, 54, 54, 54
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2014

Keywords

References

  • Callaghan, Joseph, John J. Chew III, and Stephen M. Tanny. "On the behavior of a family of meta-Fibonacci sequences." SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Fig. 1.7.

Crossrefs

Same recurrence as A240828, A120503 and A046702.

Programs

  • Maple
    #T_s,k(n) from Callaghan et al. Eq. (1.6).
    s:=0; k:=3;
    a:=proc(n) option remember; global s,k;
    if n <= 3 then n-2
    else
        add(a(n-i-s-a(n-i-1)),i=0..k-1);
    fi; end;
    t1:=[seq(a(n),n=1..100)];
Showing 1-7 of 7 results.