A240831 Sequence U(n) arising from analysis of structure of A240830.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 7, 7, 7, 7, 7, 13, 7, 13, 7, 7, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 13, 7, 19, 7, 13, 7, 13, 7, 19, 7, 19, 7, 13, 7, 19
Offset: 2
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
- Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Eq. (2.2) and Table 2.2.
- Index entries for Hofstadter-type sequences
Programs
-
Maple
#T_s,k(n) from Callaghan et al. Eq. (2.2). s:=0; k:=7; T:=proc(n) option remember; global R,U,s,k; # A240830 if n <= s+k then 1 else add(U(n-i),i=0..k-1); fi; end; U:=proc(n) option remember; global R,T,s,k; # A240831 T(R(n)); end; R:=proc(n) option remember; global U,T,s,k; # A240832 n-s-T(n-1); end; t1:=[seq(U(n),n=2..100)];
-
Mathematica
A240830[n_]:=A240830[n]=If[n<=7,1,Sum[A240831[n-i],{i,0,6}]]; A240831[n_]:=A240831[n]=A240830[n-A240830[n-1]]; Array[A240831,100,2] (* Paolo Xausa, Dec 06 2023, after N. J. A. Sloane *)
Comments