A120666 Triangle read by rows: T(n, k) = (n*k)!/(n!)^k.
1, 1, 6, 1, 20, 1680, 1, 70, 34650, 63063000, 1, 252, 756756, 11732745024, 623360743125120, 1, 924, 17153136, 2308743493056, 1370874167589326400, 2670177736637149247308800, 1, 3432, 399072960, 472518347558400, 3177459078523411968000, 85722533226982363751829504000, 7363615666157189603982585462030336000
Offset: 1
Examples
Triangle begins: 1; 1, 6; 1, 20, 1680; 1, 70, 34650, 63063000; 1, 252, 756756, 11732745024, 623360743125120;
Links
- Seiichi Manyama, Rows n = 1..26, flattened
- Eric Weisstein's World of Mathematics, Macdonald's Constant-Term Conjecture
Programs
-
Magma
[Factorial(n*k)/(Factorial(n))^k: k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 26 2022
-
Maple
T:= (m, n)-> (n*m)!/(m!)^n: seq(seq(T(m, n), n=1..m), m=1..7); # Alois P. Heinz, Apr 12 2018
-
Mathematica
Table[(n*k)!/(n!)^k, {n,10}, {k,n}]//Flatten
-
SageMath
def A120666(n,k): return gamma(n*k+1)/(factorial(n))^k flatten([[A120666(n,k) for k in range(1,n+1)] for n in range(1,11)]) # G. C. Greubel, Dec 26 2022
Formula
T(n, k) = (k*n)!/(n!)^k.
Extensions
Edited by N. J. A. Sloane, Jun 17 2007
Offset corrected by Alois P. Heinz, Apr 12 2018
New name using formula by Joerg Arndt, Apr 15 2018
Comments