cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120685 Integers m such that the sequence defined by f(0)=m and f(n+1)=1+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the repetitive cycle 4 -> 3 -> 4 -> ...

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 13, 15, 16, 17, 20, 22, 23, 25, 26, 30, 32, 33, 34, 37, 39, 40, 41, 44, 45, 46, 47, 50, 51, 52, 53, 55, 60, 61, 64, 65, 66, 68, 69, 71, 74, 75, 77, 78, 80, 82, 83, 85, 88, 90, 91, 92, 94, 97, 99, 100, 102, 104, 106, 107, 110, 111, 113, 115, 117, 119, 120
Offset: 0

Views

Author

Carlos Alves, Jun 25 2006

Keywords

Comments

Let f(0)=m; f(n+1)=1+gpf(f(n)), where gpf(n) is the greatest prime factor of n (A006530). For any m, for sufficiently large n the sequence f(n) oscillates between 3 and 4. Given a sufficiently large n, this allows us to divide integers in two classes: C3 (m such that the sequence f(n) enters the cycle 3, 4, 3, ...) and C4 (m such that the sequence f(n) enters the cycle 4, 3, 4, ...). We present here C4 as the one that begin with 4. In A120684 we present C3 as the one that begin with 3.

Examples

			Oscillation between 3 and 4: 1+gpf(3)=1+3=4; 1+gpf(4)=1+2=3.
Other value, e.g. 7: 1+gpf(7)=1+7=8; 1+gpf(8)=1+2=3 (7 belongs to C3).
Other value, e.g. 20: 1+gpf(20)=1+5=6; 1+gpf(6)=1+3=4 (20 belongs to C4).
		

Crossrefs

Programs

  • Mathematica
    f = Function[n, FactorInteger[n][[ -1, 1]] + 1]; mn = Map[(NestList[f, #, 8][[ -1]]) &, Range[2, 500]]; out = Flatten[Position[mn, 4]] + 1

Extensions

Edited by Michel Marcus, Feb 25 2013

A120686 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 5 -> 7 -> 9 -> 5 -> ...

Original entry on oeis.org

5, 10, 15, 19, 20, 25, 30, 31, 38, 40, 45, 47, 50, 53, 57, 60, 61, 62, 75, 76, 80, 90, 93, 94, 95, 97, 100, 103, 106, 109, 114, 120, 122, 124, 125, 133, 135, 141, 149, 150, 152, 155, 159, 160, 163, 171, 173, 180, 183, 186, 188, 190, 191, 194, 199, 200
Offset: 0

Views

Author

Carlos Alves, Jun 25 2006

Keywords

Comments

Let f(0)=m; f(n+1)= c + d gpf(f(n)), where gpf(n) is the largest prime factor of n (A006530). For any m, for sufficiently large n the sequence f(n) oscillates. In A120684, A120685 the values d=c=1 were considered. Here we consider d=1, c=2 and this allows us to divide integers in 4 classes: C4 (m such that f(n)=4, which is a fixed point); C5 (m such that f(n)=5, then oscillates between 5,7,9); C7 (m such that f(n)=7, then oscillates between 7,9,5); C9 (m such that f(n)=9, then oscillates between 9,5,7); In A120686 (here) we present C5 as the one that includes 5. In A120687 we present C7 as the one that includes 7. In A120688 we present C9 as the one that includes 9.
Note that if f(n) is not prime then f(n+1)= 2 + gpf(f(n)) <= 2 + f(n)/2 and the sequence decreases. If f(n) is prime and 2+f(n) is prime, the sequence will decrease when 2k+f(n) is not prime, which must occur for k>2. The bottom limit case is the cycle (5 7 9). The only other possibility occurs for 2^k numbers that go to the fixed point 4 because 2+gpf(2^k)=2+2=4.

Examples

			Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5.
Fixed point is 4: 2+gpf(4)=2+2=4.
		

Crossrefs

Programs

  • Mathematica
    fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc5

A120687 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 7 -> 9 -> 5 -> 7 -> ...

Original entry on oeis.org

7, 11, 14, 21, 22, 28, 33, 35, 37, 41, 42, 44, 49, 55, 56, 63, 66, 67, 70, 71, 74, 77, 79, 82, 83, 84, 88, 89, 98, 99, 105, 110, 111, 112, 113, 121, 123, 126, 127, 132, 134, 137, 140, 142, 147, 148, 151, 154, 158, 164, 165, 166, 167, 168, 175, 176, 178, 179, 185, 189
Offset: 0

Views

Author

Carlos Alves, Jun 25 2006

Keywords

Comments

Let f(0)=m; f(n+1)= c + d gpf(f(n)), where gpf(n) is the largest prime factor of n (A006530). For any m, for sufficiently large n the sequence f(n) oscillates. In A120684, A120685 the values d=c=1 were considered. Here we consider d=1, c=2 and this allows us to divide integers in 4 classes: C4 (m such that f(n)=4, which is a fixed point); C5 (m such that f(n)=5, then oscillates between 5,7,9); C7 (m such that f(n)=7, then oscillates between 7,9,5); C9 (m such that f(n)=9, then oscillates between 9,5,7); In A120686 we present C5 as the one that includes 5. In A120687 (here) we present C7 as the one that includes 7. In A120688 we present C9 as the one that includes 9.
Note that if f(n) is not prime then f(n+1)= 2 + gpf(f(n)) <= 2 + f(n)/2 and the sequence decreases. If f(n) is prime and 2+f(n) is prime, the sequence will decrease when 2k+f(n) is not prime, which must occur for k>2. The bottom limit case is the cycle (5 7 9). The only other possibility occurs for 2^k numbers that go to the fixed point 4 because 2+gpf(2^k)=2+2=4.

Examples

			Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5.
Fixed point is 4: 2+gpf(4)=2+2=4.
		

Crossrefs

Programs

  • Mathematica
    fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc7

A120688 Integers m such that the sequence defined by f(0)=m and f(n+1)=2+gpf(f(n)), with gpf(n) being the greatest prime factor of n (A006530), ends up in the period 3 cycle 9 -> 5 -> 7 -> 9 -> ...

Original entry on oeis.org

3, 6, 9, 12, 13, 17, 18, 23, 24, 26, 27, 29, 34, 36, 39, 43, 46, 48, 51, 52, 54, 58, 59, 65, 68, 69, 72, 73, 78, 81, 85, 86, 87, 91, 92, 96, 101, 102, 104, 107, 108, 115, 116, 117, 118, 119, 129, 130, 131, 136, 138, 139, 143, 144, 145, 146, 153, 156, 157, 161, 162
Offset: 0

Views

Author

Carlos Alves, Jun 25 2006

Keywords

Comments

Let f(0)=m; f(n+1)= c + d gpf(f(n)), where gpf(n) is the largest prime factor of n (A006530). For any m, for sufficiently large n the sequence f(n) oscillates. In A120684, A120685 the values d=c=1 were considered. Here we consider d=1, c=2 and this allows us to divide integers in 4 classes: C4 (m such that f(n)=4, which is a fixed point); C5 (m such that f(n)=5, then oscillates between 5,7,9); C7 (m such that f(n)=7, then oscillates between 7,9,5); C9 (m such that f(n)=9, then oscillates between 9,5,7); In A120686 we present C5 as the one that includes 5. In A120687 we present C7 as the one that includes 7. In A120688 (here) we present C9 as the one that includes 9.
Note that if f(n) is not prime then f(n+1)= 2 + gpf(f(n)) <= 2 + f(n)/2 and the sequence decreases. If f(n) is prime and 2+f(n) is prime, the sequence will decrease when 2k+f(n) is not prime, which must occur for k>2. The bottom limit case is the cycle (5 7 9). The only other possibility occurs for 2^k numbers that go to the fixed point 4 because 2+gpf(2^k)=2+2=4.

Examples

			Oscillation between 5,7,9: 2+gpf(5)=2+5=7; 2+gpf(7)=2+7=9; 2+gpf(9)=2+3=5.
Fixed point is 4: 2+gpf(4)=2+2=4.
		

Crossrefs

Programs

  • Mathematica
    fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1;Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1;Cc9 = Flatten[Position[mn, 9]] + 1; Cc9
Showing 1-4 of 4 results.