cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120701 Number of unit circles which fit touching a circle of radius n-1, i.e., with their centers on a circle of radius n.

Original entry on oeis.org

2, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, 157, 160, 163, 166, 169, 172, 175, 179, 182, 185, 188
Offset: 1

Views

Author

Martin Fuller, Jun 28 2006

Keywords

Comments

Coincides with A022844 = floor(n*Pi) except at n=1, 25510582, ... (sequence A120702).

Crossrefs

Programs

  • Magma
    R:= RealField(30); [Floor(Pi(R)/Arcsin(1/n)) : n in [1..70]]; // G. C. Greubel, Aug 25 2023
  • Mathematica
    Table[Floor[Pi/ArcSin[1/n]], {n, 60}] (* Indranil Ghosh, Jul 21 2017 *)
  • Python
    from mpmath import mp, pi, asin
    mp.dps=100
    def a(n): return int(floor(pi/asin(1./n)))
    print([a(n) for n in range(1, 61)]) # Indranil Ghosh, Jul 21 2017
    
  • SageMath
    [floor(pi/arcsin(1/n)) for n in range(1,71)] # G. C. Greubel, Aug 25 2023
    

Formula

a(n) = floor(Pi/arcsin(1/n)).

A376207 Numbers k such that ceiling(2*Pi*k/sqrt(2)) != ceiling(Pi/arcsin(sqrt(2)/(2*k))).

Original entry on oeis.org

1, 70, 569, 58704, 15770314
Offset: 1

Views

Author

Hugo Pfoertner, Sep 15 2024

Keywords

Comments

2*n/sqrt(2) > 1/arcsin(sqrt(2)/(2*n)) for all n > 0.
Limit_{x->oo} 2*x/sqrt(2) - 1/arcsin(sqrt(2)/(2*x)) = 0.

Examples

			  n    k=a(n)        2*Pi*k/sqrt(2)   Pi/arcsin(sqrt(2)/(2*k))
  1         1         4.44288293816             4.000000000000
  2        70       311.00180567109           310.996516371805
  3       569      2528.00039181211          2527.999741125982
  4     58704    260815.00000164873        260814.999995341832
  5  15770314  70065659.00000001744      70065658.999999993965
		

Crossrefs

Showing 1-2 of 2 results.