cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107374 Records in A120713.

Original entry on oeis.org

2, 23, 37, 211, 311, 313, 317, 23691827, 236132639, 2711142277, 236918275481, 23671421424998147, 23611223366121242363, 27111422497798154539, 23611192233385766114209418627, 23611222333466669138253506759, 236918274154821232463697381107, 2361122333766741112224078141221
Offset: 1

Views

Author

N. J. A. Sloane, Jul 21 2007

Keywords

A120716 a(1)=1, a(p)=p if p is a prime. Otherwise, start with n and iterate the map (k -> concatenation of nontrivial divisors of k) until we reach a prime q; then a(n) = q. If we never reach a prime, a(n) = -1.

Original entry on oeis.org

1, 2, 3, 2, 5, 23, 7
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2007

Keywords

Comments

a(8) is currently unknown.
The sequence continues from a(8)-a(100): >10^50, 3, 5, 11, >10^50, 13, 313, 1129, >10^50, 17, >10^50, 19, >10^50, 37, 211, 23, >10^50, 5, 3251, 313, >10^50, 29, >10^50, 31, >10^50, 311, >10^50, 1129, >10^50, 37, 373, 313, >10^50, 41, >10^50, 43, >10^50, >10^50, 223, 47, >10^50, 7, >10^50, 317, >10^50, 53, 23691827, 773, >10^50, 1129, 229, 59, >10^50, 61, >10^50, 378593, >10^50, >10^5", >10^50, 67, >10^50, 39191573, >10^50, 71, >10^50, 73, 379, >10^50, >10^50, 3979237, 236132639, 79, >10^50, >10^50, 241, 83, >10^50, 3137, >10^50, 3983249, >10^50, 89, >10^50, >10^50, >10^50, 331, 1319, 36389, >10^50, 97, >10^50, 391133, >10^50. - Robert Price, Mar 27 2019

Examples

			4 -> 2, prime, so a(4) = 2.
6 -> 2,3 -> 23, prime, so a(6) = 23.
8 -> 2,4 -> 24 -> 2,3,4,6,8,12 -> 2346812 -> 2,4,13,26,52,45131,90262,180524,586703,1173406 -> 2413265245131902621805245867031173406 -> ? (see link for the continuation)
9 -> 3, prime, so a(9) = 3.
21 -> 3,7 -> 37, prime, so a(21) = 37.
		

Crossrefs

Programs

  • Mathematica
    A120716[n_] := Module[{x},
       If[n == 1, Return[1]];
       If[PrimeQ[n], Return[n]];
       x = FromDigits[Flatten[IntegerDigits[Rest[Most[Divisors[n]]]]]];
       If[x > 10^50, Return[">10^50"], A120716[x]]];
    Table[A120716[n], {n, 1, 100}] (* Robert Price, Mar 27 2019 *)

Extensions

Edited by Michel Marcus, Mar 09 2023

A120712 Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.

Original entry on oeis.org

4, 6, 9, 21, 22, 25, 33, 39, 46, 49, 51, 54, 58, 78, 82, 93, 99, 111, 115, 121, 133, 141, 142, 147, 153, 154, 159, 162, 166, 169, 174, 177, 186, 187, 189, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 286, 289, 291, 294, 301, 318
Offset: 1

Views

Author

Eric Angelini, Jul 19 2007

Keywords

Examples

			   k |    divisors    | concatenation
  ---+----------------+--------------
   4 | (1) 2      (4) |        2
   6 | (1) 2, 3   (6) |       23
   9 | (1) 3      (9) |        3
  21 | (1) 3, 7  (21) |       37
  22 | (1) 2, 11 (22) |      211
  25 | (1) 5     (25) |        5
  33 | (1) 3, 11 (33) |      311
  39 | (1) 3, 13 (39) |      313
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for k from 2 to 1000 do:
    v0:=divisors(k):
    nn:=nops(v0):
    if nn > 2 then
    v1:=[seq(v0[j],j=2..nn-1)]:
    v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))):
    v3:=parse(v2):
    if isprime(v3) = true then lprint(k,v3) fi:
    fi:
    od: # Simon Plouffe
  • Mathematica
    fQ[n_] := PrimeQ@ FromDigits@ Most@ Rest@ Divisors@ n; Select[ Range[2, 320], fQ]
  • Python
    from sympy import divisors, isprime
    def ok(n):
        s = "".join(str(d) for d in divisors(n)[1:-1])
        return s != "" and isprime(int(s))
    print([k for k in range(319) if ok(k)]) # Michael S. Branicky, Oct 01 2024

Extensions

Name edited by Michel Marcus, Mar 09 2023
Showing 1-3 of 3 results.