A120715 Sequence produced by 14 X 14 Markov chain based on 14-vertex graph formed from direct product of two copies of the graph used in A120714.
0, 27, 838, 4025, 29742, 161630, 962784, 5335471, 30120946, 166834881, 926998480, 5122817760, 28316610392, 156260679433, 862162027134, 4754345230927, 26214240435218, 144511100239056, 796592187757696
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Fano Plane
- Index entries for linear recurrences with constant coefficients, signature (2,30,-6,-263,-250,419,666,228,-28,-17).
Crossrefs
Cf. A111384.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x*(27+784*x+1539*x^2-3286*x^3-6475*x^4-1442*x^5-3783*x^6-4444*x^7 -986*x^8)/((1-x-x^2)*(1+3*x+x^2)*(1-5*x-3*x^2+x^3)*(1+x-11*x^2 -17*x^3)) )); // G. C. Greubel, Jul 22 2023 -
Mathematica
M = {{0,1,0,0,0,1,1,1,0,0,0,0,0,0}, {1,0,1,1,0,1,1,0,1,0,0,0,0,0}, {0, 1,0,1,0,0,1,0,0,1,0,0,0,0}, {0,1,1,0,1,1,1,0,0,0,1,0,0,0}, {0,0,0,1, 0,1,1,0,0,0,0,1,0,0}, {1,1,0,1,1,0,1,0,0,0,0,0,1,0}, {1,1,1,1,1,1,0, 0,0,0,0,0,0,1}, {1,0,0,0,0,0,0,0,1,0,0,0,1,1}, {0,1,0,0,0,0,0,1,0,1, 1,0,1,1}, {0,0,1,0,0,0,0,0,1,0,1,0,0,1}, {0,0,0,1,0,0,0,0,1,1,0,1,1, 1}, {0,0,0,0,1,0,0,0,0,0,1,0,1,1}, {0,0,0,0,0,1,0,1,1,0,1,1,0,1}, {0, 0,0,0,0,0,1,1,1,1,1,1,1,0}}; v[1]= Table[Fibonacci[n], {n,0,13}]; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n,50}] LinearRecurrence[{2,30,-6,-263,-250,419,666,228,-28,-17}, {0,27,838, 4025,29742,161630,962784,5335471,30120946,166834881}, 50] (* G. C. Greubel, Jul 22 2023 *)
-
SageMath
def f(x): return x*(27+784*x+1539*x^2-3286*x^3-6475*x^4-1442*x^5-3783*x^6-4444*x^7 -986*x^8)/((1-x-x^2)*(1+3*x+x^2)*(1-5*x-3*x^2+x^3)*(1+x-11*x^2 -17*x^3)) def A120715_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(x) ).list() A120715_list(50) # G. C. Greubel, Jul 22 2023
Formula
G.f.: x*(27 +784*x +1539*x^2 -3286*x^3 -6475*x^4 -1442*x^5 -3783*x^6 -4444*x^7 -986*x^8)/((1 -x -x^2)*(1 +3*x +x^2)*(1 -5*x -3*x^2 +x^3)*(1 +x -11*x^2 -17*x^3)). - Colin Barker, Nov 29 2012
Extensions
Edited by N. J. A. Sloane, Jul 14 2007
Comments