A120714 Expansion of 2*x^2*(7+14*x+4*x^2)/((1+x-x^2)*(1-2*x-10*x^2-6*x^3)).
0, 14, 42, 232, 974, 4522, 20180, 91422, 411782, 1858856, 8384078, 37827386, 170648724, 769875718, 3473203086, 15669055544, 70689396502, 318908566562, 1438725432052, 6490672907694, 29282051536966, 132103184740456
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Fano Plane
- Index entries for linear recurrences with constant coefficients, signature (0,15,26,-3,-24,-2,6).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 2*x^2*(7+14*x+4*x^2)/((1+x-x^2)*(1-2*x-10*x^2-6*x^3)) )); // G. C. Greubel, Jul 22 2023 -
Maple
a[1]:=0: a[2]:=14: a[3]:=42: a[4]:=232: a[5]:=974: a[6]:=4522: a[7]:=20180: a[8]:=91422: for n from 9 to 25 do a[n]:=15*a[n-2]+26*a[n-3]-3*a[n-4]-24*a[n-5]-2*a[n-6]+6*a[n-7] end do: seq(a[n], n=1..25);
-
Mathematica
LinearRecurrence[{0,15,26,-3,-24,-2,6},{0,14,42,232,974,4522,20180},30] (* Harvey P. Dale, Sep 20 2011 *)
-
SageMath
def A120714_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 2*x^2*(7+14*x+4*x^2)/((1+x-x^2)*(1-2*x-10*x^2-6*x^3)) ).list() a=A120714_list(30); a[1:] # G. C. Greubel, Jul 22 2023
Formula
a(n) = 15*a(n-2) +26*a(n-3) -3*a(n-4) -24*a(n-5) -2*a(n-6) +6*a(n-7).
O.g.f.: 2*x^2*(7+14*x+4*x^2)/((1+x-x^2)*(1-2*x-10*x^2-6*x^3)). - R. J. Mathar, Dec 05 2007
Extensions
Edited by N. J. A. Sloane, Jul 14 2007, Jul 28 2007
New name using g.f. from Joerg Arndt, Sep 21 2021
Comments