A120736 Numbers k such that every prime p that divides d(k) (A000005) also divides k.
1, 2, 6, 8, 9, 10, 12, 14, 18, 22, 24, 26, 30, 34, 36, 38, 40, 42, 46, 54, 56, 58, 60, 62, 66, 70, 72, 74, 78, 80, 82, 84, 86, 88, 90, 94, 96, 102, 104, 106, 108, 110, 114, 118, 120, 122, 126, 128, 130, 132, 134, 136, 138, 142, 146, 150, 152, 154, 156, 158, 166, 168
Offset: 1
Keywords
Examples
d(26) = 4. 2 is the only prime dividing 4. 2 divides 26, so 26 is in the sequence.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..1000] | Denominator(&*[d: d in Divisors(n)] / #[d: d in Divisors(n)]) eq 1]; // Jaroslav Krizek, Sep 05 2017
-
Maple
isA120736 := proc(n) local d,p; d := numtheory[tau](n) ; p := 2 ; while p <= n do if ( d mod p ) = 0 then if ( n mod p ) <> 0 then RETURN(false) ; fi ; fi ; p := nextprime(p) ; od ; RETURN(true) ; end: for n from 1 to 200 do if isA120736(n) then printf("%d,",n) ; fi ; od ; # R. J. Mathar, Aug 17 2006
-
Mathematica
Select[Range@ 168, Divisible[Times @@ Divisors@ #, DivisorSigma[0, #]] &] (* Michael De Vlieger, Sep 05 2017 *)
Extensions
More terms from R. J. Mathar, Aug 17 2006
Comments