cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A293376 Corresponding values of pod(n)/tau(n) of numbers n from A120736.

Original entry on oeis.org

1, 1, 9, 16, 9, 25, 288, 49, 972, 121, 41472, 169, 101250, 289, 1119744, 361, 320000, 388962, 529, 1062882, 1229312, 841, 3888000000, 961, 2371842, 3001250, 11609505792, 1369, 4626882, 327680000, 1681, 29274835968, 1849, 7496192, 44286750000, 2209, 65229815808
Offset: 1

Views

Author

Jaroslav Krizek, Oct 07 2017

Keywords

Comments

Integer of pod(n)/tau(n) of numbers n such that tau(n) = the number of the divisors of n (A000005) divides pod(n) = the product of the divisors of n (A007955).

Examples

			For n = 3; A120736(3) = 6; pod(6)/tau(6) = 36/4 = 9.
		

Crossrefs

Programs

  • Magma
    [Numerator(&*[d: d in Divisors(n)] / #[d: d in Divisors(n)]): n in [1..1000] | Denominator(&*[d: d in Divisors(n)] / #[d: d in Divisors(n)]) eq 1];
  • Mathematica
    (Times @@ #)/Length@ # &@ Divisors@ # & /@ Select[Range@ 100, Divisible[Times @@ Divisors@ #, DivisorSigma[0, #]] &] (* Michael De Vlieger, Oct 10 2017 *)

Formula

a(n) = A291186(A120736(n))/A137927(A120736(n)).

A306671 a(n) = gcd(tau(n), pod(n)) where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 1, 1, 1, 4, 1, 4, 3, 4, 1, 6, 1, 4, 1, 1, 1, 6, 1, 2, 1, 4, 1, 8, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 9, 1, 4, 1, 8, 1, 8, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 8, 1, 8, 1, 4, 1, 12, 1, 4, 3, 1, 1, 8, 1, 2, 1, 8, 1, 12, 1, 4, 3, 2, 1, 8, 1, 10, 1, 4, 1, 12, 1, 4
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2019

Keywords

Comments

Sequence of the smallest numbers k such that a(k) = n: 1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, ...

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = gcd(numdiv(n), vecprod(divisors(n))); \\ Michel Marcus, Mar 04 2019

Formula

a(n) = 1 for numbers in A046642.
a(n) = tau(n) for numbers in A120736.

A120737 Numbers k whose number of divisors d(k) is divisible by every prime factor of k.

Original entry on oeis.org

1, 2, 8, 9, 12, 18, 32, 72, 80, 96, 108, 128, 243, 288, 448, 486, 512, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1620, 1944, 2000, 2025, 2048, 2560, 2592, 3888, 4032, 4050, 4608, 5000, 5625, 6144, 6561, 6912, 7500, 7776, 8192, 8748, 9408, 10800, 11250
Offset: 1

Views

Author

Leroy Quet, Jun 29 2006

Keywords

Comments

Numbers k such that A000005(k)/A007947(k) is an integer. A070226 is a subsequence of this sequence. Conjecture: If A000005(k) divides A007947(k) for some k, then A007947(k)/A000005(k)=1. - Ctibor O. Zizka, Feb 05 2009
This sequence contains exactly those positive integers k where 1 is the only positive divisor of k that is coprime to d(k). - Leroy Quet, May 23 2009

Examples

			d(32) = 6. 2 is the only prime dividing 32. 2 divides 6, so 32 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA120737 := proc(n) local d,p; d := numtheory[tau](n) ; p := 2 ; while p <= n do if ( n mod p ) = 0 then if ( d mod p ) <> 0 then RETURN(false) ; fi ; fi ; p := nextprime(p) ; od ; RETURN(true) ; end: for n from 1 to 12000 do if isA120737(n) then printf("%d,",n) ; fi ; od ;
    # R. J. Mathar, Aug 17 2006
  • Mathematica
    divQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Divisible[DivisorSigma[0, n], #] &]; Select[Range[10^4], divQ] (* Amiram Eldar, Nov 08 2020 *)
  • PARI
    isok(k) = Mod(numdiv(k), k)^eulerphi(k) == 0; \\ Michel Marcus, May 11 2019

Extensions

More terms from R. J. Mathar, Aug 17 2006
Name simplified by Jon E. Schoenfield, Mar 03 2019

A306682 a(n) = gcd(sigma(n), pod(n)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 4, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 1, 12, 1, 2, 1, 56, 1, 72, 1, 1, 3, 2, 1, 1, 1, 4, 1, 10, 1, 48, 1, 4, 3, 4, 1, 4, 1, 1, 9, 2, 1, 24, 1, 8, 1, 2, 1, 24, 1, 4, 1, 1, 1, 144, 1, 2, 3, 16, 1, 3, 1, 2, 1, 4, 1, 24, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

See A324527(n) = the smallest numbers k such that a(k) = n.

Examples

			For n=6: a(6) = gcd(tau(6), pod(6)) = gcd(4, 36) = 4.
		

Crossrefs

Programs

  • Magma
    [GCD(SumOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • PARI
    a(n) = my(d=divisors(n)); gcd(vecsum(d), vecprod(d)); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = 1 for numbers in A014567.
a(n) = tau(n) for numbers in A324526.

A324528 a(n) = lcm(tau(n), pod(n)) where tau(k) = the number of divisors of k (A000005) and pod(n) = the product of divisors of k (A007955).

Original entry on oeis.org

1, 2, 6, 24, 10, 36, 14, 64, 27, 100, 22, 1728, 26, 196, 900, 5120, 34, 5832, 38, 24000, 1764, 484, 46, 331776, 375, 676, 2916, 65856, 58, 810000, 62, 98304, 4356, 1156, 4900, 10077696, 74, 1444, 6084, 2560000, 82, 3111696, 86, 255552, 182250, 2116, 94
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Examples

			For n=4: a(4) = lcm(tau(4), pod(4)) = lcm(3, 8) = 24.
		

Crossrefs

Programs

  • Magma
    [LCM(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
    
  • Mathematica
    Table[LCM[DivisorSigma[0,n],Times@@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm(vecprod(d), #d); \\ Michel Marcus, Mar 05 2019

Formula

a(n) = pod(n) for numbers n in A120736.
a(n) = tau(n) * pod(n) for numbers n in A046642.

A137927 a(n) = the largest divisor of A000005(n) that is coprime to n. (A000005(n) = the number of positive divisors of n.).

Original entry on oeis.org

1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 2, 5, 3, 3, 4, 3, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 2, 7, 4, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 23 2008

Keywords

Comments

Apparently also the denominator of A007955(n)/A000005(n). See A291186. - Jaroslav Krizek, Sep 05 2017

Examples

			20 has 6 positive divisors. The divisors of 6 are 1,2,3,6. The divisors of 6 that are coprime to 20 are 1 and 3. 3 is the largest of these; so a(20) = 3.
		

Crossrefs

Programs

  • Maple
    A137927 := proc(n)
        local a;
        a := 1 ;
        for d in numtheory[divisors](numtheory[tau](n)) do
            if igcd(d,n) = 1 then
                a := max(a,d) ;
            end if:
        end do:
        a ;
    end proc:
    seq(A137927(n),n=1..100) ; # R. J. Mathar, Sep 22 2017
  • Mathematica
    Table[Select[Divisors[Length[Divisors[n]]], GCD[ #, n] == 1 &][[ -1]], {n, 1, 80}] (* Stefan Steinerberger, Mar 09 2008 *)
  • PARI
    a(n) = my(d=divisors(numdiv(n))); forstep(k=#d, 1, -1, if (gcd(d[k], n) == 1, return (d[k]))); \\ Michel Marcus, Sep 22 2017; corrected Jun 13 2022

Extensions

More terms from Stefan Steinerberger, Mar 09 2008

A277521 Numbers k such that number of divisors of k and sum of divisors of k divides product of divisors of k and the average of the divisors of k is an integer.

Original entry on oeis.org

1, 6, 30, 66, 102, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2130, 2226, 2280, 2310, 2346, 2370, 2670, 2730, 2760, 2838, 2970, 2982, 3102, 3162, 3210, 3360, 3444, 3486, 3498, 3570, 3720, 3780, 3948, 3990
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2016

Keywords

Comments

Intersection of A003601, A120736 and A145551.
Numbers k such that A000005(k)|A007955(k), A000203(k)|A007955(k) and A000005(k)| A000203(k).
Numbers k such that A000005(k)|A062981(k), A072861(k)|A062758(k) and A245656(k) = 1.

Examples

			a(2) = 6 because 6 has 4 divisors {1,2,3,6}, 1*2*3*6/4 = 9, 1*2*3*6/(1 + 2 + 3 + 6) = 3 and (1 + 2 + 3 + 6)/4 = 3 are integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;for n from 1 to q do
    a:=divisors(n); b:=mul(a[k],k=1..nops(a));
    if type(sigma(n)/tau(n),integer) and type(b/sigma(n),integer) and
    type(b/tau(n),integer) then print(n); fi;
    od; end: P(10^5); # Paolo P. Lava, Oct 20 2016
  • Mathematica
    Select[Range[4000], Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[1, #1]] && Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[0, #1]] && Divisible[DivisorSigma[1, #1], DivisorSigma[0, #1]] & ]

A291186 a(n) = numerator of (pod(n) / tau(n)).

Original entry on oeis.org

1, 1, 3, 8, 5, 9, 7, 16, 9, 25, 11, 288, 13, 49, 225, 1024, 17, 972, 19, 4000, 441, 121, 23, 41472, 125, 169, 729, 10976, 29, 101250, 31, 16384, 1089, 289, 1225, 1119744, 37, 361, 1521, 320000, 41, 388962, 43, 42592, 30375, 529, 47, 127401984, 343, 62500, 2601
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2017

Keywords

Comments

pod(n) = the product of the divisors of n (A007955), tau(n) = the number of the divisors of n (A000005).

Examples

			For n = 4; pod(4) / tau(4) = 8 / 3; a(n) = 8.
		

Crossrefs

Cf. A137927 (denominator).

Programs

  • Magma
    [Numerator(&*[d: d in Divisors(n)] / #[d: d in Divisors(n)]): n in [1..1000]];
    
  • Maple
    f:= proc(n) local D; D:= numtheory:-divisors(n); numer(convert(D,`*`)/nops(D)) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 14 2017
  • Mathematica
    Table[Numerator[Apply[Times, Divisors@ n]/DivisorSigma[0, n]], {n, 51}] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    a(n) = my(d=divisors(n)); numerator(prod(k=1, #d, d[k])/#d); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = numerator of (A007955(n) / A000005(n)).

A048751 Composites k whose product of divisors divided by number of divisors is an integer.

Original entry on oeis.org

6, 8, 9, 10, 12, 14, 18, 22, 24, 26, 30, 34, 36, 38, 40, 42, 46, 54, 56, 58, 60, 62, 66, 70, 72, 74, 78, 80, 82, 84, 86, 88, 90, 94, 96, 102, 104, 106, 108, 110, 114, 118, 120, 122, 126, 128, 130, 132, 134, 136, 138, 142, 146, 150, 152, 154, 156, 158, 166, 168, 170
Offset: 1

Views

Author

Enoch Haga, Dec 11 1999

Keywords

Comments

Sequence is identical to A120736 except that it does not include terms 1 and 2, which are not composite. Michel Marcus, Jun 06 2014

Examples

			For k=8, product of divisors is 8*4*2*1=64; number of divisors = 4; 64/4 = 16 (an integer), so 8 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],CompositeQ[#]&&IntegerQ[(Times@@Divisors[#])/ DivisorSigma[ 0,#]]&] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    isok(n) = (n!=1) && ! isprime(n) && (d = divisors(n)) && ((prod(i=1, #d, d[i]) % numdiv(n)) == 0); \\ Michel Marcus, Jun 05 2014
    
  • PARI
    is(n)=my(f=factor(n)); n>5 && !isprime(n) && if(gcd(f[,2])%2, n^(numdiv(f)/2), sqrtint(n)^numdiv(f))%numdiv(f)==0 \\ Charles R Greathouse IV, Jun 06 2014

Extensions

Corrected by Michel Marcus, Jun 05 2014

A291899 Numbers n such that (pod(n)/tau(n)) > (pod(k)/tau(k)) for all k < n.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240, 10080, 12600
Offset: 1

Views

Author

Jaroslav Krizek, Oct 10 2017

Keywords

Comments

pod(n) = the product of the divisors of n (A007955), tau(n) = the number of the divisors of n (A000005).
Contains all members of A002182 except 2. - Robert Israel, Nov 09 2017
Is this the same as A034288 except for 3? - Georg Fischer, Oct 09 2018
From David A. Corneth, Oct 11 2018: (Start)
Various methods exist to find terms for this sequence, possibly combinable:
- Brute force; checking every positive integer up to some bound.
- Finding terms based on the prime signature.
- Relating to that, the number of divisors.
- Finding terms based on the GCD of some earlier found terms.
- ... (?)
There seems to be a method that helps finding terms < 10^150 for the similar A034287. (End)

Examples

			6 is a term because pod(6)/tau(6) = 36/4 = 9 > pod(k)/tau(k) for all k < 6.
		

Crossrefs

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..60] do k:=0; flag:= true; while flag do k+:=1; if &*[d: d in Divisors(a)] / #[d: d in Divisors(a)] lt &*[d: d in Divisors(k)] / #[d: d in Divisors(k)] then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
  • Maple
    f:= proc(n) local t; t:= numtheory:-tau(n); simplify(n^(t/2))/t end proc:
    N:= 20000: # to get all terms <= N
    Res:= NULL: m:= 0:
    for n from 1 to N do
      v:= f(n);
      if v > m then Res:= Res, n; m:= v fi
    od:
    Res; # Robert Israel, Nov 09 2017
  • Mathematica
    With[{s = Array[Times @@ Divisors@ # &, 12600]}, Select[Range@ Length@ s, Function[m, AllTrue[Range[# - 1], m > s[[#]]/DivisorSigma[0, #] &]][s[[#]]/DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 10 2017 *)
    DeleteDuplicates[Table[{n,Times@@Divisors[n]/DivisorSigma[0,n]},{n,13000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Mar 03 2024 *)

Formula

Numbers n such that (A007955(n)/A000005(n)) > (A007955(k)/A000005(k)) for all k < n.
Numbers n such that (A291186(n)/A137927(n)) > (A291186(k)/A137927(k)) for all k < n.
Showing 1-10 of 10 results.