A137927 a(n) = the largest divisor of A000005(n) that is coprime to n. (A000005(n) = the number of positive divisors of n.).
1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 2, 5, 3, 3, 4, 3, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 2, 7, 4, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1
Offset: 1
Keywords
Examples
20 has 6 positive divisors. The divisors of 6 are 1,2,3,6. The divisors of 6 that are coprime to 20 are 1 and 3. 3 is the largest of these; so a(20) = 3.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A137927 := proc(n) local a; a := 1 ; for d in numtheory[divisors](numtheory[tau](n)) do if igcd(d,n) = 1 then a := max(a,d) ; end if: end do: a ; end proc: seq(A137927(n),n=1..100) ; # R. J. Mathar, Sep 22 2017
-
Mathematica
Table[Select[Divisors[Length[Divisors[n]]], GCD[ #, n] == 1 &][[ -1]], {n, 1, 80}] (* Stefan Steinerberger, Mar 09 2008 *)
-
PARI
a(n) = my(d=divisors(numdiv(n))); forstep(k=#d, 1, -1, if (gcd(d[k], n) == 1, return (d[k]))); \\ Michel Marcus, Sep 22 2017; corrected Jun 13 2022
Extensions
More terms from Stefan Steinerberger, Mar 09 2008
Comments