cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A137927 a(n) = the largest divisor of A000005(n) that is coprime to n. (A000005(n) = the number of positive divisors of n.).

Original entry on oeis.org

1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 5, 2, 1, 2, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 1, 2, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 2, 5, 3, 3, 4, 3, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 2, 7, 4, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 23 2008

Keywords

Comments

Apparently also the denominator of A007955(n)/A000005(n). See A291186. - Jaroslav Krizek, Sep 05 2017

Examples

			20 has 6 positive divisors. The divisors of 6 are 1,2,3,6. The divisors of 6 that are coprime to 20 are 1 and 3. 3 is the largest of these; so a(20) = 3.
		

Crossrefs

Programs

  • Maple
    A137927 := proc(n)
        local a;
        a := 1 ;
        for d in numtheory[divisors](numtheory[tau](n)) do
            if igcd(d,n) = 1 then
                a := max(a,d) ;
            end if:
        end do:
        a ;
    end proc:
    seq(A137927(n),n=1..100) ; # R. J. Mathar, Sep 22 2017
  • Mathematica
    Table[Select[Divisors[Length[Divisors[n]]], GCD[ #, n] == 1 &][[ -1]], {n, 1, 80}] (* Stefan Steinerberger, Mar 09 2008 *)
  • PARI
    a(n) = my(d=divisors(numdiv(n))); forstep(k=#d, 1, -1, if (gcd(d[k], n) == 1, return (d[k]))); \\ Michel Marcus, Sep 22 2017; corrected Jun 13 2022

Extensions

More terms from Stefan Steinerberger, Mar 09 2008

A318279 a(n) is the least k such that k^(tau(n)-1) >= n^tau(n).

Original entry on oeis.org

4, 9, 8, 25, 11, 49, 16, 27, 22, 121, 20, 169, 34, 37, 32, 289, 33, 361, 37, 58, 62, 529, 38, 125, 78, 81, 55, 841, 49, 961, 64, 106, 111, 115, 57, 1369, 128, 133, 68, 1681, 72, 1849, 94, 97, 165, 2209, 74, 343, 110, 190, 115, 2809, 96, 210, 100, 220, 225
Offset: 2

Views

Author

David A. Corneth, Oct 09 2018

Keywords

Comments

For prime p and m > 0, a(p^m) = p^(m+1). - Muniru A Asiru, Nov 23 2018

Examples

			As tau(4) = 3, we look for the least k such that k^(3-1) >= 4^3, for which we find k = 8. Therefore, a(4) = 8.
		

Crossrefs

Programs

  • GAP
    List(List([2..57],n->Filtered([2..3000],k->k^(Tau(n)-1) >= n^Tau(n))),i->i[1]); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Array[Block[{k = 1}, While[k^(#2 - 1) < #1^#2, k++] & @@ {#, DivisorSigma[0, #]}; k] &, 55, 2] (* Michael De Vlieger, Oct 10 2018 *)
  • PARI
    a(n) = my(nd = numdiv(n)); res = ceil(n ^ (nd / (nd - 1))); while(res^(nd-1) >= n^nd, res--); res+1
    

Formula

a(n) = ceiling(n^(1 + 1/(tau(n)-1))). - Jon E. Schoenfield, Nov 22 2018

Extensions

Correct value a(27) = 81 inserted by Muniru A Asiru, Nov 22 2018
Showing 1-2 of 2 results.