cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120738 a(n) = 4*n - A000120(n).

Original entry on oeis.org

0, 3, 7, 10, 15, 18, 22, 25, 31, 34, 38, 41, 46, 49, 53, 56, 63, 66, 70, 73, 78, 81, 85, 88, 94, 97, 101, 104, 109, 112, 116, 119, 127, 130, 134, 137, 142, 145, 149, 152, 158, 161, 165, 168, 173, 176, 180, 183, 190, 193, 197, 200, 205, 208, 212, 215, 221, 224, 228
Offset: 0

Views

Author

Paul Barry, Jun 29 2006

Keywords

Comments

Partial sums of A090739.
a(n) is also the increasing sequence of exponents of x in Product_{k > 1} (1 + x^(2^k - 1)). - Paul Pearson (ppearson(AT)rochester.edu), Aug 06 2008
Related to partial sums of the Ruler sequence A001511 by a(n) = A005187(2n), therefore {a(n)+1} are the indices of 1's in A252488. - M. F. Hasler, Jan 22 2015

Crossrefs

Programs

  • Magma
    A120738:= func< n | 4*n-(&+Intseq(n, 2)) >;
    [A120738(n): n in [0..100]]; // G. C. Greubel, Oct 20 2024
  • Maple
    a:=n->simplify(log[2](16^n/(add(modp(binomial(n,k),2),k=0..n))));
    a:=n->simplify(log[2](16^n/(2^(n-(padic[ordp](n!,2)))))); # Note: n-(padic[ordp](n!,2)) is the number of 1's in the binary expansion of n. - Paul Pearson (ppearson(AT)rochester.edu), Aug 06 2008
  • Mathematica
    Table[4 n - DigitCount[n, 2, 1], {n, 0, 58}] (* Michael De Vlieger, Nov 06 2016 *)
  • PARI
    {a(n) = if( n < 0, 0, 4*n - subst( Pol( binary( n ) ), x, 1) ) } /* Michael Somos, Aug 28 2007 */
    
  • PARI
    a(n) = 4*n - hammingweight(n); \\ Michel Marcus, Nov 06 2016
    
  • Python
    # Python 3.10
    def A120738(n): return (n<<2)-n.bit_count() # Chai Wah Wu, Jul 12 2022
    
  • Sage
    A120738 = lambda n: 4*n - sum(n.digits(2))
    print([A120738(n) for n in (0..58)]) # Peter Luschny, Nov 06 2016
    

Formula

a(n) = log_2(16^n/A001316(n)). [This was the original definition.]
a(n) = 2n + A005187(n).
a(n) = 3n + A011371(n).
a(n) = 4n - log_2(A001316(n)).
a(n) = log_2(A061549(n)).
2^a(n) = 16^n/A001316(n) = A061549(n).
a(n) = A086343(n) + A001511(n) for n>0. - Alford Arnold, Mar 23 2009
2^a(n) = abs(A067624(n)/A117972(n)). - Johannes W. Meijer, Jul 06 2009
a(n) = Sum_{k>=0} (A030308(n,k)*A000225(k+2)). - Philippe Deléham, Oct 16 2011
a(n) = A005187(2n). - M. F. Hasler, Jan 22 2015

Extensions

Definition simplified by M. F. Hasler, Dec 29 2012