A120861
Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1
Northwest corner:
1, 7, 41, 239, 1393, 8119, 47321, ...
2, 12, 70, 408, 2378, 13860, 80782, ...
3, 19, 111, 647, 3771, 21979, 128103, ...
4, 24, 140, 816, 4756, 27720, 161564, ...
5, 31, 181, 1055, 6149, 35839, 208885, ...
6, 36, 210, 1224, 7134, 41580, 242346, ...
... [Edited by _Petros Hadjicostas_, Jul 07 2020]
Cf.
A087056,
A087059,
A120858,
A120859,
A120860,
A120862,
A120863,
A336109 (first column),
A002315 (first row),
A001542 (2nd row),
A253811 (3rd row).
-
f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
A120860
Fixed-j dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 5, 3, 10, 29, 4, 17, 58, 169, 6, 22, 99, 338, 985, 7, 34, 128, 577, 1970, 5741, 8, 39, 198, 746, 3363, 11482, 33461, 9, 46, 227, 1154, 4348, 19601, 66922, 195025, 11, 51, 268, 1323, 6726, 25342, 114243, 390050, 1136689, 12, 63, 297, 1562, 7711
Offset: 1
Northwest corner:
1, 5, 29, 169, 985, 5741, 33461, 195025, ...
2, 10, 58, 338, 1970, 11482, 66922, 390050, ...
3, 17, 99, 577, 3363, 19601, 114243, 665857, ...
4, 22, 128, 746, 4348, 25342, 147704, 860882, ...
6, 34, 198, 1154, 6726, 39202, 228486, 1331714, ...
7, 39, 227, 1323, 7711, 44943, 261947, 1526739, ...
...
Cf.
A087056,
A087059,
A098021,
A120858,
A120859,
A120861,
A120862,
A120863,
A120871,
A187967,
A187968.
-
f(n) = 3*n + 2*sqrtint(2*n^2); \\ A098021
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
A120862
Fixed-j dispersion for Q = 13: array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 10, 3, 20, 109, 4, 30, 218, 1189, 5, 43, 327, 2378, 12970, 6, 53, 469, 3567, 25940, 141481, 7, 63, 578, 5116, 38910, 282962, 1543321, 8, 76, 687, 6305, 55807, 424443, 3086642, 16835050, 9, 86, 829, 7494, 68777, 608761, 4629963, 33670100, 183642229
Offset: 1
Northwest corner:
1, 10, 109, 1189, ...
2, 20, 218, 2378, ...
3, 30, 327, 3567, ...
4, 43, 469, 5116, ...
5, 53, 578, 6305, ...
6, 63, 687, 7494, ...
...
-
f(n) = floor((11 + 3*sqrt(13))/2*n) - floor(3*frac((1 + sqrt(13))*n/2));
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 11*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; };
lista(nb) = {my(m=D(nb)); for (n=1, nb, for (j=1, n, print1(m[n-j+1, j], ", ");););} \\ Michel Marcus, Jul 09 2020
A120863
Fixed-k dispersion for Q = 13: array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 13, 3, 23, 142, 4, 33, 251, 1549, 5, 46, 360, 2738, 16897, 6, 56, 502, 3927, 29867, 184318, 7, 66, 611, 5476, 42837, 325799, 2010601, 8, 79, 720, 6665, 59734, 467280, 3553922, 21932293, 9, 89, 862, 7854, 72704, 651598, 5097243, 38767343, 239244622
Offset: 1
Northwest corner:
1, 13, 142, 1549, ...
2, 23, 251, 2738, ...
3, 33, 360, 3927, ...
4, 46, 502, 5476, ...
5, 56, 611, 6665, ...
6, 66, 720, 7854, ...
...
-
f(n) = floor((11 + 3*sqrt(13))/2*n) - floor(3*frac((1 + sqrt(13))*n/2)) + 3;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 11*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; };
lista(nb) = {my(m=D(nb)); for (n=1, nb, for (j=1, n, print1(m[n-j+1, j], ", ");););} \\ Michel Marcus, Jul 09 2020
A120859
Dispersion of the sequence ([r*n] + 1: n >= 1), where r = 3 + 8^(1/2): square array D(n,m) (n, m >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 6, 3, 12, 35, 4, 18, 70, 204, 5, 24, 105, 408, 1189, 7, 30, 140, 612, 2378, 6930, 8, 41, 175, 816, 3567, 13860, 40391, 9, 47, 239, 1020, 4756, 20790, 80782, 235416, 10, 53, 274, 1393, 5945, 27720, 121173, 470832, 1372105, 11, 59, 309, 1597, 8119
Offset: 1
Northwest corner:
1, 6, 35, 204, 1189, ...
2, 12, 70, 408, 2378, ...
3, 18, 105, 612, 3567, ...
4, 24, 140, 816, 4756, ...
5, 30, 175, 1020, 5945, ...
... [Corrected by _Petros Hadjicostas_, Jul 07 2020]
In row 1, we have 6 = [r] + 1, 35 = [6*r], 204 = [35*r] + 1, etc., where r = 3 + 8^(1/2); each new row starts with the least "new" number n, followed by [n*r] + 1, [[n*r + 1]*r + 1], [[[n*r + 1]*r + 1]*r] + 1, and so on.
-
tabls(nn)={default("realprecision", 1000); my(D=matrix(nn, nn)); r = 3 + 8^(1/2); s=r/(r-1); for(n=1, nn, D[n, 1]=floor(s*(n-1))+1); for(m=2, nn, for(n=1, nn, D[n, m]=floor(r*D[n, m-1])+1)); D}
/* To print the array flattened */
flat(nn)={D=tabls(nn); for(n=1, nn, for(m=1, n, print1(D[n+1-m, m], ", ")))}
/* To print the square array */
square(nn)={D=tabls(nn); for(n=1, nn, for(m=1, nn, print1(D[n, m], ", ")); print())} \\ Petros Hadjicostas, Jul 07 2020
Showing 1-5 of 5 results.
Comments