A120861
Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1
Northwest corner:
1, 7, 41, 239, 1393, 8119, 47321, ...
2, 12, 70, 408, 2378, 13860, 80782, ...
3, 19, 111, 647, 3771, 21979, 128103, ...
4, 24, 140, 816, 4756, 27720, 161564, ...
5, 31, 181, 1055, 6149, 35839, 208885, ...
6, 36, 210, 1224, 7134, 41580, 242346, ...
... [Edited by _Petros Hadjicostas_, Jul 07 2020]
Cf.
A087056,
A087059,
A120858,
A120859,
A120860,
A120862,
A120863,
A336109 (first column),
A002315 (first row),
A001542 (2nd row),
A253811 (3rd row).
-
f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
A120862
Fixed-j dispersion for Q = 13: array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 10, 3, 20, 109, 4, 30, 218, 1189, 5, 43, 327, 2378, 12970, 6, 53, 469, 3567, 25940, 141481, 7, 63, 578, 5116, 38910, 282962, 1543321, 8, 76, 687, 6305, 55807, 424443, 3086642, 16835050, 9, 86, 829, 7494, 68777, 608761, 4629963, 33670100, 183642229
Offset: 1
Northwest corner:
1, 10, 109, 1189, ...
2, 20, 218, 2378, ...
3, 30, 327, 3567, ...
4, 43, 469, 5116, ...
5, 53, 578, 6305, ...
6, 63, 687, 7494, ...
...
-
f(n) = floor((11 + 3*sqrt(13))/2*n) - floor(3*frac((1 + sqrt(13))*n/2));
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 11*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; };
lista(nb) = {my(m=D(nb)); for (n=1, nb, for (j=1, n, print1(m[n-j+1, j], ", ");););} \\ Michel Marcus, Jul 09 2020
A120863
Fixed-k dispersion for Q = 13: array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 13, 3, 23, 142, 4, 33, 251, 1549, 5, 46, 360, 2738, 16897, 6, 56, 502, 3927, 29867, 184318, 7, 66, 611, 5476, 42837, 325799, 2010601, 8, 79, 720, 6665, 59734, 467280, 3553922, 21932293, 9, 89, 862, 7854, 72704, 651598, 5097243, 38767343, 239244622
Offset: 1
Northwest corner:
1, 13, 142, 1549, ...
2, 23, 251, 2738, ...
3, 33, 360, 3927, ...
4, 46, 502, 5476, ...
5, 56, 611, 6665, ...
6, 66, 720, 7854, ...
...
-
f(n) = floor((11 + 3*sqrt(13))/2*n) - floor(3*frac((1 + sqrt(13))*n/2)) + 3;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 11*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; };
lista(nb) = {my(m=D(nb)); for (n=1, nb, for (j=1, n, print1(m[n-j+1, j], ", ");););} \\ Michel Marcus, Jul 09 2020
A120858
Dispersion of the Beatty sequence ([r*n]: n >= 1), where r = 3 + 8^(1/2): square array D(n,m) (n, m >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 5, 3, 11, 29, 4, 17, 64, 169, 6, 23, 99, 373, 985, 7, 34, 134, 577, 2174, 5741, 8, 40, 198, 781, 3363, 12671, 33461, 9, 46, 233, 1154, 4552, 19601, 73852, 195025, 10, 52, 268, 1358, 6726, 26531, 114243, 430441, 1136689, 12, 58, 303, 1562
Offset: 1
Northwest corner:
1, 5, 29, 169, 985, ...
2, 11, 64, 373, 2174, ...
3, 17, 99, 577, 3363, ...
4, 23, 134, 781, 4552, ...
6, 34, 198, 1154, 6726, ...
...
In row 1, we have 5 = [r], 29 = [5*r], 169 = [29*r], etc., where r = 3 + 8^(1/2); each new row starts with the least "new" number n, followed by [n*r], [[n*r]*r], [[[n*r]*r]*r], and so on.
-
tabls(nn)={default("realprecision", 1000); my(D=matrix(nn,nn)); r = 3 + 8^(1/2); s=r/(r-1); for(n=1, nn, D[n,1]=floor(s*n)); for(m=2, nn, for(n=1, nn, D[n,m]=floor(r*D[n,m-1]))); D}
/* To print the array flattened */
flat(nn)={D=tabls(nn); for(n=1, nn, for(m=1, n, print1(D[n+1-m,m],",")))}
/* To print the square array */
square(nn)={D=tabls(nn); for(n=1,nn, for(m=1,nn, print1(D[n,m], ",")); print())} \\ Petros Hadjicostas, Jul 07 2020
A120859
Dispersion of the sequence ([r*n] + 1: n >= 1), where r = 3 + 8^(1/2): square array D(n,m) (n, m >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 6, 3, 12, 35, 4, 18, 70, 204, 5, 24, 105, 408, 1189, 7, 30, 140, 612, 2378, 6930, 8, 41, 175, 816, 3567, 13860, 40391, 9, 47, 239, 1020, 4756, 20790, 80782, 235416, 10, 53, 274, 1393, 5945, 27720, 121173, 470832, 1372105, 11, 59, 309, 1597, 8119
Offset: 1
Northwest corner:
1, 6, 35, 204, 1189, ...
2, 12, 70, 408, 2378, ...
3, 18, 105, 612, 3567, ...
4, 24, 140, 816, 4756, ...
5, 30, 175, 1020, 5945, ...
... [Corrected by _Petros Hadjicostas_, Jul 07 2020]
In row 1, we have 6 = [r] + 1, 35 = [6*r], 204 = [35*r] + 1, etc., where r = 3 + 8^(1/2); each new row starts with the least "new" number n, followed by [n*r] + 1, [[n*r + 1]*r + 1], [[[n*r + 1]*r + 1]*r] + 1, and so on.
-
tabls(nn)={default("realprecision", 1000); my(D=matrix(nn, nn)); r = 3 + 8^(1/2); s=r/(r-1); for(n=1, nn, D[n, 1]=floor(s*(n-1))+1); for(m=2, nn, for(n=1, nn, D[n, m]=floor(r*D[n, m-1])+1)); D}
/* To print the array flattened */
flat(nn)={D=tabls(nn); for(n=1, nn, for(m=1, n, print1(D[n+1-m, m], ", ")))}
/* To print the square array */
square(nn)={D=tabls(nn); for(n=1, nn, for(m=1, nn, print1(D[n, m], ", ")); print())} \\ Petros Hadjicostas, Jul 07 2020
A120871
a(n) is the value of j for row n of the fixed-j dispersion for Q = 8.
Original entry on oeis.org
1, 4, 2, 7, 8, 17, 7, 18, 17, 32, 14, 31, 9, 28, 23, 46, 16, 41, 34, 63, 25, 56, 14, 47, 36, 73, 23, 62, 49, 92, 34, 79, 64, 113, 47, 98, 28, 81, 62, 119, 41, 100, 79, 142, 56, 121, 31, 98, 73, 144, 46, 119, 92, 169, 63, 142, 113, 196, 82, 167, 49, 136, 103, 194
Offset: 1
For each positive integer n, there is a unique pair (j,k) of positive integers such that (j + k + 1)^2 - 4*k = 8*n^2. This representation is used to define the fixed-j dispersion for Q = 8, given by A120860, having northwest corner:
1, 5, 29, 169, ...
2, 10, 58, 338, ...
3, 17, 99, 577, ...
4, 22, 128, 746, ...
...
The pair (j,k) for each n, shown in the position occupied by n in the above array, is shown here:
(1,2), (1,14), (1,82), (1,478), ...
(4,1), (4,25), (4,161), (4,953), ...
(2,7), (2,47), (2,279), (2,1631), ...
(7,4), (7,56), (7,356), (7,2104), ...
...
The fixed-j for row 1 is a(1) = 1;
the fixed-j for row 2 is a(2) = 4; etc.
(For example, (4 + 25 + 1)^2 - 4*25 = 8*10^2.)
-
f(n) = 3*n + 2*sqrtint(2*n^2); \\ A098021
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; }; \\ A120860
q(n) = 2*n^2 - sqrtint(2*n^2)^2; \\ A087056
lista(nn) = my(m=D(nn)); vector(nn, n, q(m[n, 1])); \\ Michel Marcus, Jul 09 2020
A120872
a(n) is the value of k for row n of the fixed-k dispersion for Q = 8.
Original entry on oeis.org
2, 1, 7, 4, 14, 9, 16, 7, 25, 14, 23, 8, 34, 17, 47, 28, 41, 18, 56, 31, 46, 17, 63, 32, 82, 49, 68, 31, 89, 50, 71, 28, 94, 49, 72, 23, 97, 46, 124, 71, 98, 41, 127, 68, 97, 34, 128, 63, 161, 94, 127, 56, 162, 89, 124, 47, 161, 82, 119, 36, 158, 73, 199, 112
Offset: 1
For each positive integer n, there is a unique pair (j,k) of positive integers such that (j + k + 1)^2 - 4*k = 8*n^2. This representation is used to define the fixed-k dispersion for Q=8, given by A120861, having northwest corner:
1, 7, 41, 239, ...
2, 12, 70, 408, ...
3, 19, 111, 647, ...
4, 24, 140, 816, ...
...
The pair (j,k) for each n, shown in the position occupied by n in the above array, is shown here:
(1,2), (17,2), (43,2), (673,2), ...
(4,1), (32,1), (196,1), (1152,1), ...
(2,7), (46,7), (306,7), (1822,7), ...
(7,4), (63,4), (391,4), (2303,4), ...
...
The fixed-k for row 1 is a(1) = 2;
the fixed-k for row 2 is a(2) = 1; etc.
(For example, (46 + 7 + 1)^2 - 4*7 = 8*19^2.)
-
f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; }; \\ A120860
q(n) = (1 + sqrtint(2*n^2))^2 - 2*n^2; \\ A087059
lista(nn) = my(m=D(nn)); vector(nn, n, q(m[n, 1])); \\ Michel Marcus, Jul 10 2020
Showing 1-7 of 7 results.
Comments