A120893 a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3); a(0)=1, a(1)=1, a(2)=5.
1, 1, 5, 17, 65, 241, 901, 3361, 12545, 46817, 174725, 652081, 2433601, 9082321, 33895685, 126500417, 472105985, 1761923521, 6575588101, 24540428881, 91586127425, 341804080817, 1275630195845, 4760716702561, 17767236614401
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
Programs
-
Magma
[Floor(((-1)^n+(2-Sqrt(3))^n+(2+Sqrt(3))^n)/3): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
-
Maple
a[0]:=1: a[1]:=1: a[2]:=5: for n from 3 to 40 do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3] od: seq(a[n],n=0..30); # Emeric Deutsch, Jul 24 2006
-
Mathematica
Transpose[NestList[Flatten[{Rest[#],3Last[#]+3#[[2]]- First[#]}]&, {1,1,5},25]][[1]] (* or *) CoefficientList[Series[(1-2 x-x^2)/(1-3 x-3 x^2+x^3),{x,0,25}],x] (* Harvey P. Dale, Mar 27 2011 *)
Formula
a(n) = [(-1)^n+(2-sqrt(3))^n+(2+sqrt(3))^n]/3. - Emeric Deutsch, Jul 24 2006
O.g.f: -(-1+2*x+x^2)/((1+x)*(x^2-4*x+1)). - R. J. Mathar, Dec 02 2007
a(n)+a(n+1) = A003699(n+1), n>0. - R. J. Mathar, Oct 15 2013
Extensions
More terms from Emeric Deutsch, Jul 24 2006
Comments