A120992 Number of integers in n-th run of squarefree positive integers.
3, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 2, 3, 3, 2, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 1, 1, 2, 3, 1
Offset: 1
Keywords
Examples
The runs of squarefree integers are as follows: (1,2,3), (5,6,7), (10,11), (13,14,15), (17), (19), (21,22,23),...
Links
- A. Karttunen & R. Zumkeller (the first 1000 terms), Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Squarefree
Programs
-
Maple
with(numtheory): a:=proc(n) if mobius(n)=0 then n else fi end: A:=[0,seq(a(n),n=1..500)]: b:=proc(n) if A[n]-A[n-1]>1 then A[n]-A[n-1]-1 else fi end: seq(b(n),n=2..nops(A)); # Emeric Deutsch, Jul 24 2006
-
Mathematica
t = {}; cnt = 0; Do[If[SquareFreeQ[n], cnt++, If[cnt > 0, AppendTo[t, cnt]; cnt = 0]], {n, 500}]; t (* T. D. Noe, Mar 19 2013 *)
-
PARI
n=1; while(n<1000, c=0; while(issquarefree(n), n++; c++); print1(c,", "); while(!issquarefree(n), n++)) \\ Rick L. Shepherd, Jul 25 2006
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define (A120992 n) (if (= n 1) (Aincr_points_of_A243348 n) (- (Aincr_points_of_A243348 n) (Aincr_points_of_A243348 (- n 1))))) ;; Using these two auxiliary functions, not submitted separately: (define Aincr_points_of_A243348 (COMPOSE -1+ (NONZERO-POS 1 1 Afirst_diffs_of_A243348))) (define (Afirst_diffs_of_A243348 n) (if (< n 2) (- n 1) (- (A243348 n) (A243348 (- n 1)))))
Extensions
More terms from Emeric Deutsch and Rick L. Shepherd, Jul 25 2006
Comments